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Since the Industrial Revolution, the acidity of the world’s
oceans has increased significantly. This change is entirely
the result of human activities. About one third of all the
carbon dioxide (CO2) emitted by human activities has
been absorbed by the oceans. The uptake of CO2 by the
oceans produces carbonic acid, altering the chemistry of
the oceans and making seawater corrosive to some miner-
als. Without strong action to reduce CO2 emissions, the
oceans will deteriorate to conditions detrimental to shell-
forming organisms, coral reefs, and the marine food
chain, thus threatening fisheries and marine ecosystems
generally. This brief describes the changes in the
chemistry of the world’s oceans and explores the potential
implications for marine ecosystems and the
global food supply.

Greenhouse gas (GHG) emissions from human activ-

ity, particularly CO2 from the burning of fossil fuels,

are increasing the heat-trapping capacity of the

atmosphere.1 However, not all of the CO2 emitted

by human activities remains in the atmosphere—

about one third of manmade CO2 emissions have

been absorbed by the oceans (Sabine et al. 2004).

Without this ocean “carbon sink,” the atmospheric

concentration of CO2 would be even higher than it

is today. Although the ocean carbon sink has

delayed some of the impacts of climate change, the

accumulation of carbon in the oceans is beginning

to change the chemistry of seawater, which is likely

to have detrimental impacts on marine ecosystems

and cause the fraction of manmade CO2 that the

oceans can absorb to decrease in the coming

decades. 

Ocean acidification is happening now. Acidity is

measured in pH units, with decreasing pH corre-

sponding to more acidic conditions. Before humans began

emitting large quantities of CO2, the pH of the oceans was

8.1—8.2 (Caldeira and Wickett 2005). Since then, the pH of the

oceans has declined by 0.1 unit (Figure 1; Orr et al. 2005; IPCC

2007a). This change might sound small, but it represents a 26

percent increase in acidity.2 This change is fundamentally

altering the seawater chemistry to which marine life has

adapted over millions of years. In its Fourth Assessment

Report, the Intergovernmental Panel on Climate Change

(IPCC) estimates from its mid-range projection for future

emissions that the pH of the oceans will decline by an

additional 0.3 to 0.4 unit (or become 2 to 2.5 times more acidic

than the pre-industrial oceans) by 2100 (IPCC 2007b, p. 793).

1 See Pew’s Science Brief 1, “The Causes of Global
Climate Change”.
2 The pH scale is logarithmic, meaning that 1 pH unit
represents a tenfold change in acidity.

Figure 1: Changes in surface ocean CO2 content (left) and pH (right) from three
measurement stations. The upper data set was recorded in the Atlantic Ocean off
the coast of West Africa, the middle data set was recorded near Hawaii, and the
lower data set was recorded near Bermuda. Reproduced from Figure 5-9 of the
IPCC AR4 WGI (IPCC 2007b, p.404).
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Other models suggest that continued

emissions of fossil-fuel CO2 could lead to a

pH drop of 0.7 (which would be five times

more acidic than the pre-industrial oceans)

by the year 2300, a level not seen in the

Earth’s oceans in the last 300 million years.

Since the oceans have not been so acidic in

the last 300 million years, current marine life

is not adapted to such conditions (Caldeira

and Wickett 2003; Raven et al. 2005). How

different organisms in different regions will

react remains uncertain, but a pH drop as

small as 0.2 unit could harm some that are

important to human welfare (Zeebe et al.

2008).

In June 2009, 100 of the world’s science

academies, including the U.S. National

Academy of Sciences, jointly issued a

warning about the serious risks of ocean

acidification and called for rapid and large

reductions in global CO2 emissions to

address the problem3: 

“The rapid increase in CO2 emissions

since the industrial revolution has

increased the acidity of the world’s

oceans with potentially profound conse-

quences for marine plants and animals

especially those that require calcium

carbonate to grow and survive, and

other species that rely on these for food.”

How Does It Work? The Science of Ocean
Acidification

Seawater has a unique chemistry. The mmaarriinnee  ccaarrbboonnaattee  bbuuffffeerr

ssyysstteemm controls the pH of the oceans by allowing them to

absorb far more CO2 than would be expected based on the

solubility of CO2 alone (Denman et al. 2007). The ultimate effect

of adding more CO2 to seawater is to produce an excess of

positively charged hydrogen ions4, which is the source of

2

acidity (Figure 2). Acids are corrosive because hydrogen ions are

extremely reactive. In seawater, hydrogen ions readily attach to

carbonate ions (CO3
2-) to form bicarbonate ions (HCO3

-). Shell-

forming marine organisms use carbonate ions to build shells and

skeletons made of calcium carbonate (CaCO3), a process called
ccaallcciiffiiccaattiioonn. Today, the upper levels of the ocean largely

contain enough carbonate ions to sustain marine life as we

know it, but as acidity increases fewer carbonate ions will be

available for sea organisms to calcify. At high enough concentra-

tions, hydrogen ions can even react directly with calcium

carbonate, dissolving existing shells of living organisms.

What Is Happening? Harm to Marine Life

Marine organisms have evolved gradually over millions of

years, and many are extremely sensitive to changes in the

chemical environment, particularly when those changes occur

so quickly that the organisms may not be able to adapt to new

and changing conditions. The marine ecosystems threatened by

ocean acidification represent much of world’s biodiversity, and

they provide huge benefits to society, including coastal protec-

3 http://www.interacademies.net/Object.File/Master/9/075/
Statement_RS1579_IAP_05.09final2.pdf
4 An ion is a molecule or atom that has an overall positive or negative
electrical charge. Ions readily react with oppositely charged ions to
form neutral (non-charged) substances. This chemical reactivity is why
acidification of seawater is important to the biology and carbon uptake
capacity of the oceans.

Figure 2: Ocean carbonate chemistry. As the oceans absorb CO2, the dissolved CO2
reacts with water (H2O) to form carbonic acid (H2CO3). Carbonic acid is relatively
unstable and breaks down into a bicarbonate ion (HCO3

-) and a hydrogen ion (H+).
The conversion of CO2 to bicarbonate removes a CO2 molecule from the seawater,
making room for another atmospheric CO2 molecule to dissolve; this property of
seawater allows it to absorb more CO2 from the atmosphere than an equivalent
volume of freshwater in a lake or a river. Hydrogen ions, the other product of the
conversion process, make seawater more acidic; as the concentration of hydrogen ions
increases, the pH decreases. Some of the free hydrogen ions react with carbonate ions
to form more bicarbonate ions, shifting the balance to favor bicarbonate over carbon-
ate and reducing the number of carbonate ions in the seawater. Credit BBC News
website.
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tion, food supply, and aesthetic and economic value through

recreation and tourism.

The chemical response of the oceans to increased atmos-

pheric concentrations of CO2 is well understood, and predic-

tions of future ocean acidity levels under various emissions

scenarios are well established. What is less certain is how

marine animals and ecosystems will ultimately respond to

increased acidity levels. The ability of marine animals (partic-

ularly mollusks, corals, and plankton) to make structures out

of calcium carbonate is directly affected by changes in ocean

carbonate chemistry. While much research remains to be

done, ocean acidification and other human-induced stressors

(such as coastal development, overfishing, marine pollution,

and warmer ocean temperatures) provide “great potential for

widespread changes to marine ecosystems” (Fabry et al.

2008).

The recent decline of the Pacific oyster population in the Pacific

Northwest appears to be connected to ocean acidification. The

decline began in 2005 in Washington State and continued in

2006, 2007, and 2008; two of the largest oyster hatcheries report

an 80 percent decline in production rates (Miller et al. 2009).

Scientists suspect that more acidic seawater is being pumped

into the coastal areas by north winds, which force the surface

waters away from the coast and encourage deep water to well

up. The deeper waters naturally contain a great deal of CO2, but

human activity has increased the CO2 load. In a 2007 upwelling

event, surface waters in a region near the California-Oregon

border reached an astonishingly low pH level of 7.75 (Feely et

al. 2008). Because of this high CO2 content and the correspon-

ding acidity levels, the upwelling waters are corrosive to baby

oysters. Ocean acidification will likely affect other shellfish and

commercial fish species in coastal ecosystems (Miller et al.

2009).

Much more research is needed to understand how various

marine organisms will respond to acidification in nature, but

laboratory studies demonstrate that some commercially impor-

tant species such as mussels and oysters are known to be sensi-

tive to changes in ocean chemistry, and some species of snails

and sea urchins have shown reduced shell weights under

higher pH (Table 1). These classes of animals may be particu-

larly vulnerable to ocean acidification during larval stages of

development (Fabry et al. 2008).

Ocean acidification could even strike at the base of the marine

food chain. Tiny floating organisms called plankton serve as a

critical food source to shellfish and finfish and play a key role in

regulating the carbon cycle by removing CO2 from surface

waters through their biological activities. After they die, the

plankton sink to the ocean floor, transporting the carbon they

removed from the atmosphere to deep ocean sediments where

it is buried. Key shell-forming plankton called foraminifera are

very abundant in the oceans and are responsible for much of

the carbon removal. In the Southern Ocean, shell weights of

foraminifera are currently 30—35 percent lower than the

weights of shells that are thousands of years old found in sea

sediments, suggesting they may already be affected by acidifica-

tion (Moy et al. 2009). 

Type Species pH CO2 level Shell loss Mortality Effects

Mussel M. edulis 7.1 740 ppm Y Y 25% decrease in calcification rate

Pacific Oyster C. gigas 740 ppm 10% decrease in calcification rate

Giant scallop P. magellanicus <8.0 Decreased fertilization and embryo
development

Clam M. mercenaria 7.0-7.2 Y Y

Crab C. pagurus Reduced thermal tolerance

Crab N. puber 7.98-6.04 Y Disruption of internal chemistry

Sea Urchin S. purpuratus 6.2-7.3 Y Lack of pH regulation

Dogfish S. canicula 7.7 Y

Sea bass D. labrax 7.25 Reduced feeding

Table 1: Results from laboratory experiments showing effects of ocean acidification on selected species. Adapted from Cooley and Doney
(2009) and based on review by Fabry et al. (2008).
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Coral Reefs as a Case Study

Coral reefs offer a compelling case of the risks associated with ocean acidification. These “rainforests of the seas” harbor a large
fraction of the planet’s biodiversity. Reefs are unique ecosystems that provide important services to society, ranging from habitat
for fisheries to coastal protection against tsunamis and storm surges. Reefs support many millions of people around the world
who rely on them for subsistence food gathering, particularly in the developing world, and many more people are supported
through industries such as tourism and fishing (Raven et al. 2005).

Corals have adapted over millions of years to
the chemistry and temperature of the oceans,
and they are extremely vulnerable to changes
in their physical environment. They are
already experiencing damage due to ocean
acidification. A study of 328 coral colonies
from 69 reefs in Australia’s Great Barrier Reef
demonstrated that these corals are under
increasing stress from both ocean acidifica-
tion and rising ocean temperatures.
Calcification of corals throughout the Great
Barrier Reef has declined 14.2 percent since
1990. Such a large and rapid decline is
unprecedented in coral records dating back
400 years (De'ath, Lough, and Fabricius
2009).

The combination of rising ocean tempera-
tures and increased acidity will likely cause
major changes to coral reefs over the next
few decades and beyond (Raven et al. 2005).
Already, CO2 concentrations have risen
enough that calcification rates in corals will
drop to 60-80 percent of their pre-industrial
values (Figure 3). Existing reefs may even
begin to dissolve at atmospheric CO2 concentrations as low as 560 ppm, which could be reached by the middle of this century
if emissions are not curbed (Silverman et al. 2009). 

Reefs provide a variety of economic benefits, including recreational activities, tourism, coastal protection, habitat for commer-

cial fisheries, and preservation of marine ecosystems. An analysis of potential impacts on coral reefs concluded that annual

losses in 2100 could total $870 billion (Brander et al. 2009). That analysis considered only damages that could readily be

monetized, such as tourism (including activities such as diving and snorkeling) and the harvesting of important commercial fish

species that rely on reefs for habitat. 

Coral reefs have other benefits to society that are not easily quantified and are generally excluded from economic analyses.
For instance, reefs aid in coastal protection. A modeling study indicated that healthy reefs within a meter or two of the
ocean surface help reduce tsunami run-up on land by around 50 percent (Kunkel, Hallberg, and Oppenheimer 2006).
Anecdotal reports5 following the 2004 Indian Ocean tsunami and scientific research appear to validate this finding
(Fernando et al. 2005).

Calcification Rate Relative to Pre-Industrial Levels (%)

Figure 3: These world maps show the location and anticipated decline of the
world’s coral reefs. Each map represents the ocean water pH for a given atmos-
pheric CO2 stabilization level. The colors indicate the rate of calcification of
coral reefs relative to the pre-industrial rate, when the CO2 concentration was
about 280 ppm. Reproduced from Silverman et al. (2009).

5 “On Asia’s Coasts, Progress destroys natural defenses,” The Wall Street Journal 12/31/04, reported by A. Brown, http://online.wsj.com/
article/SB110443750029213098.html.
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What Does the Future Hold?
Projected Impacts on
Marine Life

As discussed below, ocean acidifica-

tion has the potential to negatively

impact many forms of marine life.

Some organisms, like oysters, may

already be affected. Without signifi-

cant reductions in CO2 emissions,

ocean conditions are expected to

deteriorate further over this century,

reaching acidity levels that could be

detrimental to many vital species.

Observations of marine ecosystems

affected by natural underwater

volcanic CO2 vents provide clues

into the long-term impacts of acidifi-

cation. Although volcanic vents emit

a tiny amount of CO2 compared to

human activities, they can drastically

alter local marine environments,

providing a natural laboratory for studying the effects of ocean

acidification. A study of one vent site in the Mediterranean Sea

found that the presence of one species of calcifying algae

(which helps prevent coral reef erosion in the tropics) was

reduced significantly at acidity levels expected by the end of

the century and replaced by non-calcifying algal species more

resilient to higher acidity (Hall-Spencer et al. 2008; Hoegh-

Guldberg et al. 2007). This indicates that acidification may

benefit highly invasive, non-native algal species. The potential

for dramatic changes in marine environments illustrates the

danger of ocean acidification, which “will probably bring about

reductions in biodiversity and radically alter ecosystems” (Hall-

Spencer et al. 2008). 

Shellfish may be further negatively impacted by increasing

acidity of surface ocean waters. Experiments on the edible

mussel and the Pacific oyster show that these organisms exhibit

a strong decrease in calcification rates as a function of increas-

ing CO2, decreasing pH, and decreasing carbonate concentra-

tions (Table 2; Gazeau et al. 2007). These two species are

important to coastal ecosystems and are a large portion of

worldwide seafood production. The predicted decline in calcifi-

cation of mussels and oysters will likely have negative impacts

on coastal biodiversity and lead to economic losses.

Changes to the physical marine environment may also result in

unanticipated consequences of ocean acidification. As the pH

of the oceans decreases, low frequency sound absorption

decreases; the anticipated decrease of 0.3 pH unit would

decrease sound absorption by 40 percent. Increased noise from

passing ships, due to critical environmental, economic, and

military interests, may affect marine mammals, and it is unclear

how they might adapt (Hester et al. 2008). 

As discussed previously, certain species of calcifying plankton

form the base of the marine food chain and also face detrimen-

tal conditions under increasing acidity levels. As these species

decline or disappear, larger animals that feed on them may be

affected, potentially leading to ripple effects throughout the

ocean food chain (Fabry et al. 2008). The Southern Ocean,

which surrounds Antarctica, already has the lowest amounts of

carbonate because it is colder than the other oceans. As early

as the 2030s, seawater there may be able to dissolve the shells

of calcifying organisms in the wintertime (McNeil and Matear

2008). This could have potentially dramatic consequences for

the marine food chain in this region, since important species of

plankton go through larval developmental stages in winter. 

Why Should We Care? Economic Implications of
Ocean Acidification

The fundamental chemistry of the oceans is changing, and

the impacts to marine life from these changes will impact

Figure 4: U.S. Commercial fishing revenue for 2007. Total for entire U.S. was $3.97 billion.
Adapted from Cooley and Doney (2009).
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human society. The socio-economic value of coral reefs, for

example, has been highlighted (see Coral Reefs as a Case

Study).

In addition to damaging coral reefs, ocean acidification will

affect human society through its impact on fisheries, with the

possibility of declining harvests and loss of fishery revenues

from shellfish and their predators. According to the United

Nations Food and Agriculture Organization,6 global fisheries

provide around 15 percent of the animal protein consumed by

humans worldwide (much higher in Africa and Asia), provide

direct and indirect employment for nearly 200 million people,

and generate $85 billion annually. In 2007, the U.S. annual

domestic commercial fisheries contributed $34 billion to the

U.S. GNP (Cooley and Doney 2009). Mollusks, such as oysters

and mussels, contributed 19 percent of the value of the

commercial harvest for 2007, crustaceans about 30 percent, and

some 24 percent of revenues came from fish that prey directly

on calcifiers (see Figure 4). Ocean acidification could therefore

lead to “substantial revenue declines, job losses, and indirect

economic costs” (Cooley and Doney 2009).

Economic losses from decreased fishery harvests will be

concentrated in specific regions that rely heavily on such

income. New Bedford, MA is a prime example—the city has

traditionally relied on fishing income and was the top U.S. port

in terms of mollusk harvest in 2007. A 25 percent loss due to

ocean acidification could lead to direct revenue losses of

between $0.5 and $2.2 billion by 2060, and that estimate does

not include indirect losses (Cooley and Doney 2009). That

could be economically devastating to a city like New Bedford,

which has already seen a 25 percent drop in seafood products

employment from 1992—1999 and 20 percent of its residents

falling below the poverty line in 1999.

What Can We Do About It? Solutions

The emission of CO2 from human activities is driving funda-

mental changes in the chemistry of the oceans. These changes

are essentially irreversible—it will likely take many thousands of

years for natural processes to remove the excess CO2 that has

been absorbed by the oceans (Raven et al. 2005). Damage from

ocean acidification could be permanent, and adaptation

options for managing the expected changes are still being

developed.

6

Climate engineering approaches that do not address the

amount of CO2 in the atmosphere would not alleviate ocean

acidification. One idea is injecting tiny particles into the upper

atmosphere to reflect incoming sunlight and cool the Earth’s

surface, but if emissions continue unabated, ocean acidification

would also continue. One way of capturing carbon from power

plants (one of the biggest sources of GHG emissions) and keep

it from being released into the atmosphere is to pump CO2

directly into the deep oceans, but this runs the risk of worsen-

ing chemical changes to the oceans (Raven et al. 2005). Adding

limestone to the oceans to counteract the increased acidity

levels would not completely reverse the effect and may also

cause severe local environmental degradation, in addition to

being cost prohibitive and energy intensive on a global scale

(Raven et al. 2005). TThhee  oonnllyy  rreelliiaabbllee  mmeetthhoodd  ffoorr  rreedduucciinngg  tthhee

iimmppaaccttss  ooff  oocceeaann  aacciiddiiffiiccaattiioonn  iiss  ttoo  rreedduuccee  aanndd  uullttiimmaatteellyy  ssttoopp

CCOO22 eemmiissssiioonnss  ffrroomm  hhuummaann  aaccttiivviittyy  (Raven et al. 2005). 

The impacts of ocean acidification on coral reefs in particular

are further exacerbated by other stressors, including coastal

development, marine pollution, and overfishing. To help reefs

survive acidification, these stressors, also caused by human

activities, must be reduced in combination with policies to

reduce future CO2 emissions.

Federal Action on Ocean Acidification

Congress has signaled an interest in studying ocean acidifica-

tion. The Federal Ocean Acidification Research and

Monitoring Act of 2009, signed by President Obama on March

30, 2009, requires federal agencies to coordinate research and

monitoring of the acidification of the world’s oceans and to

develop a strategic plan to assess impacts and recommend

solutions. The Act also establishes a research program on

ocean acidification at the National Oceanic and Atmospheric

Administration (NOAA).

In response to a petition from the Center for Biological

Diversity, the Environmental Protection Agency has agreed to

consider how ocean acidification could be addressed under the

Clean Water Act.7 If the EPA agrees to change the standards for

the pH of seawater—which has not been updated since 1976—

in light of the predicted impacts of ocean acidification, regula-

tion of CO2 emissions under the EPA’s current authority to

regulate water quality could be one mechanism to mandate a

reduction in domestic CO2 emissions. 

7 http://www.epa.gov/waterscience/criteria/aqlife/marine-ph.html

6 “The State of the World’s Fisheries and Aquaculture” (2008), available
at http://www.fao.org/docrep/011/i0250e/i0250e00.HTM
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Summary

Ocean acidification has already been observed and will

continue to worsen as CO2 emissions from human activity

continue. The IPCC notes that “ocean acidification is not a

direct consequence of climate change but a consequence of

fossil fuel CO2 emissions, which are [also] the main driver of the

anticipated climate change” (Denman et al. 2007). Changes in

ocean chemistry are likely to negatively impact marine organ-

isms that make shells from calcium carbonate, and many could

die off under the extreme conditions projected for 2100. Such

fundamental changes would harm biodiversity of marine

ecosystems, reduce tourism and recreational activities, interrupt

the ocean’s natural food chain, disrupt the Earth’s carbon cycle,

and contribute to the decline of fisheries, thus threatening the

world’s food supply. 

Expanded efforts are now underway to better understand the

relationship between CO2 emissions and ocean acidification, as

well as its impact on marine organisms and society. The risks of

ocean acidification are just now beginning to become an

important new part of the policy dialogue about potential

responses to our continued reliance on coal, oil, and natural

gas. 
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