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Abstract Seagrasses provide a number of critical ecosystem
services, including habitat for numerous species, sediment sta-
bilization, and shoreline protection. Ariel photography is a use-
ful tool to estimate the areal extent of seagrasses, but recent
innovations in radiometrically calibrated sensors and algorithm
development have allowed identification of benthic types and
retrieval of absolute density. This study demonstrates the quan-
titative ability of a high spatial resolution (1 m) airborne
hyperspectral sensor (3.2 nm bandwidth) in the complex coastal
waters of Saint Joseph’s Bay (SJB). Several benthic types were
distinguished, including submerged and floating aquatic vege-
tation, benthic red algae, bare sand, and optically deep water. A
total of 23.6 km2 of benthic vegetation was detected, indicating
no dramatic change in vegetation area over the past 30 years.
SJB supported high seagrass density at depths shallower than
2 m with an average leaf area index of 2.0±0.6 m2 m−2. Annual
seagrass production in the bay was 13,570 t C year−1 and
represented 41%of total marine primary production. The effects
of coarser spatial resolution were investigated and found to

reduce biomass retrievals, underestimate productivity, and alter
patch size statistics. Although data requirements for this ap-
proach are considerable, water column optical modeling may
reduce the in situ requirements and facilitate the transition of this
technique to routine monitoring efforts. The ability to quantify
not just areal extent but also productivity of a seagrass meadow
in optically complex coastal waters can provide information on
the capacity of these environments to support marine foodwebs.
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Introduction

Seagrasses form extensive meadows in shallow coastal envi-
ronments, where they provide a number of critical ecosystem
services, including a source of organic carbon, habitat for
numerous species of fish and invertebrates, sediment stabili-
zation, and shoreline protection (Gillanders 2006; Marbá et al.
2006). Despite the environmental and economic significance
of these “ecosystem engineers,” seagrass populations are
threatened worldwide by coastal development and anthropo-
genic eutrophication and may be nearing a crisis with respect
to global sustainability (Short and Wyllie-Echeverria 1996;
Orth et al. 2006;Waycott et al. 2009). The overall health of the
seagrass system is driven by recruitment, mortality, and abi-
otic factors, such as light, mechanical disturbance, and nutri-
ents. These biotic and abiotic factors combine to control the
spatial distribution and density of seagrass across the subma-
rine landscape (Marba and Duarte 1995; Rose et al. 1999;
Orth et al. 2000; Robbins and Bell 2000; Harwell and Orth
2001). In turn, the mosaic nature of the seagrass meadows,
including the degree of patchiness, gap dynamics, habitat edge
type, and connectivity, controls animal recruitment and move-
ment among patches (Kurdziel and Bell 1992; With and Crist
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1995; Hovel and Lipcius 2001; Bell et al. 2006). The contin-
ued study of landscape dynamics as they apply to both the
health of the seagrass meadows and the animals they support
depends on accurate, fine-scale, and quantitative measure-
ments of areal coverage and seagrass density. Through metrics
such as seagrass density and primary production, we can
provide a direct relationship to population dynamics of juve-
nile and adult invertebrate species (Warren et al. 2010; Ralph
et al. 2013) and biogeochemical properties such as release of
labile dissolved organic carbon (Moriarty et al. 1986) and
removal or burial of particulate carbon (Mateo et al. 2006).

Remote sensing by aircraft or satellite has proven to be
useful at providing spatial information over large coastal areas
(Robbins 1997; Dekker et al. 2006; Ferwerda et al. 2007). The
spectral reflectance of seagrass leaves provides a marked con-
trast to the surrounding unvegetated environments (Fyfe 2003;
Louchard et al. 2003; Zimmerman 2003; Thorhaug et al. 2007),
and submerged aquatic vegetation (SAV) is easily differentiated
from bright sand. These spectral characteristics are distorted by
the overlying water column, so that the remotely sensed reflec-
tance is derived from a combination of benthic reflectance and
the optical properties of the water column itself (Lee et al.
1999). Changes in the quantity of phytoplankton biomass,
suspended sediment, or colored dissolved organic material
within the water column affect the optical properties overlying
the seabed (Dierssen et al. 2003; Han and Rundquist 2003;
Vahtmae et al. 2006; Silva et al. 2008) shifting the spectral
characteristics of sea surface reflectance.

Radiometrically uncalibrated aerial photography is used with
considerable success to map the relative abundance (e.g., per-
cent cover) of SAV in shallow coastal environments (Kendrick
et al. 2000; Meehan et al. 2005; http://web.vims.edu/bio/sav/
index.html). However, the lack of radiometric calibration
generally precludes accurate retrieval of absolute density from
the imagery. Further, the comparison of uncalibrated imagery
across time and space can also be problematic, as differences in
solar illumination and water column optical properties will
distort the reflectance signal emanating from the submerged
vegetation (Dierssen et al. 2003).

Radiometrically calibrated sensors provide precise estimates
of target radiance in absolute physical units (e.g., watts per
square meter per steradian) that can be used to account for
differences in illumination within and among images, allowing
for more reliable comparisons across time and space. They also
permit the application of radiative transfer theory for retrieval of
target optical properties and constituent concentrations that
permit more quantitative approaches for mapping benthic en-
vironments in optically shallow coastal waters (e.g., Maritorena
et al. 1994; Dierssen et al. 2003; Klonowski et al. 2007; Phinn
et al. 2008; Pu et al. 2012). Examples of radiometrically cali-
brated instruments include multispectral sensors, such as
SeaWiFS, MODIS, and WorldView2, that provide information
from a few (<10) discrete wave bands 25 to 50 nm in width

across the visible spectrum (400 to 700 nm), often with gaps
between the bands. Radiometrically calibrated hyperspectral
sensors, such as AVIRIS, PHILLS, SAMSON, and HICO,
provide higher spectral resolution (15 nm or less) and continu-
ous wavelength coverage across the visible spectrum, allowing
for the discrimination of subtle spectral characteristics.

There are several techniques for processing remotely
sensed imagery to SAV maps. Supervised thematic classifica-
tion provides a computationally inexpensive technique based
on the similarity of spectral characteristics among picture
elements (pixels) within a scene. These similarities may vary
across time and space due to changes in solar illumination and
water column optical characteristics, requiring expert local
knowledge to match pixel characteristics to bottom types for
each successive image (Mumby et al. 1997; Mumby and
Edwards 2002; Pasqualini et al. 2005; Matarrese et al.
2008). Physics-based methods that use radiative transfer the-
ory (modeling light absorption and scattering) attempt to
incorporate the effects of water depth and water column
transparency and promise greater generality and accuracy,
but they require radiometrically calibrated datasets (Dekker
et al. 2011). Continued advances in computational speed and
memory capacity have dramatically reduced the practical
limitations associated with radiative transfer methods that
simultaneously derivewater depth, water column constituents,
and benthic type (Lee et al. 2001; Mobley et al. 2005; Brando
et al. 2009; Sagawaa et al. 2010; Yangab et al. 2010). The
application of individual algorithms to the imagery is depen-
dent on study site complexity and access to in situ data;
knowledge or retrieval of bathymetry is considered critical
in these methods (Dekker et al. 2011). Despite potentially
demanding requirements, the retrieval of benthic reflectance
and vegetation type from these radiative transfer-based algo-
rithms provides a pathway for the automated determination of
density (leaf area index) biomass (in grams per square meter)
and the subsequent computation of net primary productivity
without the intervention of human experts required for super-
vised classification (Dierssen et al. 2003; Pu et al. 2012).

The goals of this work were to (a) test bio-optical methods
for the retrieval of absolute seagrass abundance in optically
complex coastal waters, using methods pioneered in extreme-
ly clear tropical waters of the Bahamas Banks (Dierssen et al.
2003; Dierssen et al. 2010); (b) to estimate the contribution of
SAV to overall productivity of the Saint Joseph’s Bay (SJB)
ecosystem; and (c) to explore the importance of spatial reso-
lution in the accurate retrieval of seagrass density and abun-
dance across the submarine landscape.

Methods

This analysis included in situ field work and imagery collected
from an airborne hyperspectral sensor. Image processing steps
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are shown in Fig. 1. All symbols and definitions are summa-
rized in Table 1.

Study Site

SJB, located on the Florida panhandle in the northern Gulf of
Mexico (29.797° N, 85.353° W), contains dense seagrass
meadows in optically complex waters (absorption and scatter-
ing are high) that provide an important test for the radiative
transfer algorithms that have previously been used in clear
waters. Seagrasses form dense meadows dominated by
turtlegrass (Thalassia testudinum) in the shallow fringes along
the shore (depth<2 m) with shoalgrass (Halodule wrightii),
manateegrass (Syringodium filiforme), widgeongrass (Ruppia
maritima), and stargrass (Halophila engelmannii) also present
at lower densities (Wetherell 1997). Since 1938, bay waters
have been heavily influenced by suspended sediment
and colored dissolved organic material from the
Intracoastal Waterway (Stewart and Gorsline 1962).
The fine sediments can be resuspended throughout the
bay by large storms that frequent the area, resulting in
occasional periods of extreme light attenuation
(Buonassissi and Dierssen 2010).

Airborne Remote Sensing

The images used in this study were collected using the
Spectroscopic Aerial Mapping System with On-board
Navigation (SAMSON) hyperspectral imager (band width
3.2 nm, 156 channels between 400 and 900 nm), on 29th
and 30th September 2006 (Fig. 2). Ninety-one flight lines
were flown over 2 days with a total of approximately 6.5 h
flying time on station (http://web.flenvironmental.org/data_
flightlogs_index.html#florida). Pixel resolution of this
system was 1×1 m. The hyperspectral imaging (HSI) subsys-
tem was based on an Offner spectrograph design mounted to a
push broom imaging CCD camera, specifically designed for
the marine environment (Davis et al. 2002; Bissett et al. 2004;
Kohler et al. 2004; Bissett et al. 2005). Sensor calibration and
deployment schemes were optimized to retrieve precise esti-
mates of upwelling photon densities from dark targets such as
water and submerged vegetation, defined here as targets with
<3 % total reflectance. A Multispectral Imagery (MSI) sensor
(Trimble Applanix Digital Sensor System 322) and a precision
200-Hz direct geo-reference system (Trimble Applanix 410
Position and Orientation Systems for Aviation) were used to
geo-locate the HSI data to within a 1-pixel spatial error
(Kohler et al. 2006). Geo-location of each pixel was achieved
by “boresighting” the HSI sensor relative to the MSI data over
a spatial calibration range and then applying these boresight
parameters to each frame of HSI data. The boresight param-
eters were derived using (1) sensor-measured pointing angles
for each CCD pixel, (2) measuring the relative angles between

Fig. 1 Flow chart detailing image processing steps
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the sensor and the aircraft GPS, (3) collecting the instanta-
neous inertial navigation data, (4) correcting the aircraft GPS
navigation stream by fixed ground-based station data, and (5)
ground control points from a boresight range of known
targets.

Optimal angles for light penetration into the water
column were considered during flight planning. These
encompassed sun elevation from 38° to 53° above the
horizon and relative azimuth angle between the flight
line and the sun of either 0° or 180°, while minimizing
the direct solar reflection from the water (i.e., sun glint)
into the field of view of the HSI sensor. Flight lines
required to optimize sensor performance were deter-
mined immediately prior to each flight and allowed for
adjustments due to weather conditions.

Image Processing

SAMSON-measured radiances were calibrated to absolute
units of watts per square meter per nanometer per steradian
using NIST-traceable calibration standards (Kohler et al.
2004). The calibration procedures accounted for keystone,
smile, and stray light effects of the spectrograph and image
smearing effects of the CCD camera. These calibrated,
orthorectified HSI radiance data may be downloaded from

the FERI data distribution server (http://www.weogeo.com/;
FLDEP).

Processing Imagery to Sea Surface Reflectance

The imagery was further processed to spectral remote sensing
reflectance [Rrs(λ)] by correcting for atmospheric and illumi-
nation effects, based on the TAFKAAmodel (Fig. 1; Gao et al.
2000, 2004). The TAFKAA tables are pre-calculated for a
variety of scattering aerosols and atmospheric parameters,
including aerosol optical depth, aerosol type, water column
vapor, ozone, relative humidity, tau (550), and wind speed.
The use of TAFKAA in the processing of this data required
each ground-based Rrs(λ) measured at the water surface to be
matched against one of over 75million solutions to find the set
of atmospheric parameters that best corrected the airborne
radiances to ground-based observations made at the same
geographic point during the flight collections. This best set
of atmospheric parameters was then used with the sensor
pointing and solar angle geometries taken directly from the
Applanix 410 time stamp and positional information and used
to correct every pixel in the flight line from sensor radiance to
Rrs(λ). This manner of atmospheric and illumination correc-
tion assumed that the atmospheric conditions did not change
during an individual flight window. The Rrs(λ) images from

Table 1 Summary of symbols,
their definitions, and dimensions Symbol Definition Dimensions

Basic parameters

zb Depth of the water column from the digital elevation map
corrected for canopy height and tidal state

m

TSM Total suspended material mg m−3

LAI Leaf area index m2 m−2

Chl a Chlorophyll a concentration mg m−3

SAV Submerged aquatic vegetation km−2

FAV Floating aquatic vegetation km−2

MLLW Mean low lower water m

CDOM Colored dissolved organic material Dimensionless

Inherent optical properties of the water column

ap Absorption by particulate material (algal+sediment+detritus) m−1

aa Absorption by algal material m−1

an Absorption by non-pigmented particulate material m−1

ag Absorption by CDOM m−1

apg Absorption coefficient by particulate and CDOM measured by the ac-9 m−1

cpg Beam attenuation coefficient measured by the ac-9 m−1

b Scattering coefficient measured by the ac-9 m−1

Apparent optical properties of the water column

Kd Spectral diffuse water column attenuation coefficient m−1

Rrs Remote sensing reflectance sr−1

Rb Benthic reflectance Dimensionless
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this collection may also be obtained from the FERI data
distribution server (http://www.weogeo.com/; FLDEP).

The atmospherically corrected Rrs(λ) were smoothed using
a running boxcar with a seven-point frequency (approximately
15 nm) implemented in ENVI (Ver 4.8, ITTVS), which re-
moved the high-frequency noise without compromising the
major spectral characteristics (30–50 nm wide) emanating
from the targets. To facilitate comparison between the in situ
and SAMSON data, the smoothed imagery spectra were
resampled to 5 nm intervals using a cubic spline algorithm.

Algorithms for Benthic Targets

Unvegetated land was identified in the imagery as any pixel
with Rrs(825 nm)≥0.2 sr−1 nm−1 (Fig. 1). Pixels composed of
terrestrial vegetation were identified by a positive NIR slope
in Rrs between 725 and 815 nm (Fig. 1).

NIRslope ¼ Rrs 725ð Þ − Rrs 815ð Þ½ �
725 − 815

ð1Þ

Fig. 2 RGB image of the Saint
Joseph’s Bay study region,
composited from 91 SAMSON
hyperspectral flight lines
collected in September 2006.
Inset shows the bay’s location in
the Florida panhandle (USATopo
Map from ArcGIS server).
Stations where benthic and water
column measurements were made
are identified and numbered
(reference Table 2). Benthic
stations are those visited in June
2006 where seagrass counts were
conducted. Water stations are
those visited in September 2006
for sea truthing under the Samson
flight lines
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Optically deep water (ODW; in which bottom reflectance
does not contribute measurably to Rrs) was identified as
Rrs(710 nm)<0.003 sr−1 nm−1 (Fig. 1). Vegetated marine
targets were classified using the red edge of submerged and
floating vegetation through the calculation of a Normalized
Difference Vegetative Index (NDVI; Fig. 1):

NDVI ¼ Rrs 700ð Þ − Rrs 670ð Þ
Rrs 700ð Þ þ Rrs 670ð Þ ð2Þ

The presence of two reflectance peaks at 590 and 645 was
used to identify red benthic algae (Fig. 1). Band ratios between
reflectance peaks at 715 and 815 nm were used to identify
SAVand floating aquatic vegetation (FAV; Fig. 1). A classifi-
cation accuracy matrix was constructed by comparing the
benthic type at each field station with those retrieved from
the SAMSON analysis.

In Situ Field Sampling

Stations were occupied during the period 12th to 18th June
2006 (immediately following Tropical Storm Alberto), 28th
September to 1st October 2006, and 1st to 8th November 2010
(Fig. 2; Table 2). Work in June 2006 included identification
and quantification of seagrass abundance, measurement of
absorption and scattering properties (inherent optical proper-
ties, IOPs), and the downwelling and upwelling light field
(apparent optical properties, AOPs) of the overlying water
column and benthos. These were used to characterize the
optical clarity of the water column and to develop relation-
ships between reflectance and bottom type.

In September 2006, contemporaneous in situ measure-
ments of water column IOPs and AOPs were undertaken with
an airborne image campaign using SAMSON flown 850 m
above the sea surface. Ground-based measurements of IOPs,
AOPs, and remote sensing reflectance (Rrs) during the

airborne campaign were used to provide ground reference
for atmospheric correction (Fig. 1) and for modeling of water
column optical properties. The bay was revisited in November
2010 to collect bathymetric data (Fig. 1) critical to the model-
ing of seagrass density and additional measurements of
seagrass canopy reflectance (Rb).

Seagrass Abundance

Densities of T. testudinum, H. wrightii, and S. filiforme were
determined by divers making direct counts of all shoots within
20 to 30 randomly located quadrats (0.04 m2) at each station
(Fig. 2; Table 2). One shoot of each species present was
collected from each quadrat for subsequent morphometric
analysis (total leaf length, leaf width, and number of leaves)
and determination of leaf area index (LAI=1−sided leaf area
shoot−1×shoots m−2; Table 2).

Water Column Optical Properties

Inherent Optical Properties

In situ spectral absorption (apg) and beam attenuation coeffi-
cients (cpg) for combined phytoplankton, non-algal, and col-
ored dissolved organic material (CDOM) were measured at
nine wavelengths (412, 440, 488, 510, 532, 555, 650, 676,
715 nm) using a Wetlabs ac-9 instrument deployed at a con-
stant depth at each station (0.7 m). Data were processed and
corrected for ambient temperature, salinity, and scattering by
first correcting absorption to zero at 715 nm and then assum-
ing a wavelength independent scattering phase function in
accordance with NASA protocols (Pegau et al. 2002).

Water samples were collected from the surface at each
station for subsequent analysis in the laboratory. Particles were
collected on Whatman GF/F filter pads (nominal pore size
0.7 μm), using gentle vacuum filtration (<10 mmHg). Total
spectral absorbance (Dp) was determined on the particulate

Table 2 Average seagrass abundance measurements at all stations occupied during June 2006 field work

Station ID Date Water depth (m) Seagrass species Shoot density (shoots m−2) (±SE) Leaf area index (m2 m−2) (±SE)

01 June 14, 2006 6.4 Optically deep 0 0

02 June 14, 2006 1.2 Thalassia/Syringodium 1,472 (152) 3.23 (0.30)

03 June 15, 2006 1.7 Thalassia/Syringodium 911 (127) 3.39 (0.40)

04 June 15, 2006 1.5 Thalassia/Syringodium 504 (31) N/D

05 June 16, 2006 1.6 Thalassia/Syringodium 1,125 (261) 1.72 (0.37)

06 June 16, 2006 1.5 Thalassia/Syringodium 579 (27) 1.85 (0.09)

07 June 17, 2006 2.2 Thalassia/Halodule 5,554 (1270) 1.32 (0.42)

08 June 17, 2006 6.9 Optically deep 0 0

Shoot density was calculated through direct counts of all shoots within 20 to 30 randomly located quadrats (0.04 m2 ) at each station. Leaf area index was
determined using shoot density andmorphometric analysis of shoots collected from counted quadrats (total leaf length, leaf width, and number of leaves).
Station IDs correspond to labeled stations in Fig. 2
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fraction using the integrating sphere—filter-pad technique in
accordance with NASA protocols (Mitchell et al. 2002). A
filter pad moistened with Nanopure ® water functioned as a
spectrophotometric blank. The spectral absorbance of non-
pigmented particles (Dn) was measured after extracting photo-
synthetic pigments from filters with cold methanol (Kishino
et al. 1985). The filter-pad absorbances [Dp(λ), Dn(λ)] were
corrected for multiple scattering amplification according to
Mitchell et al. (2002) and converted to total particulate [ap(λ)]
and non-pigmented particulate [an(λ)] absorption coefficients
(a=2.303D×filter pad area/volume filtered). The average ab-
sorption from 690 to 700 nm was then subtracted as a correc-
tion for residual non-specific absorption. CDOMwas captured
into clean quartz glass vials by filtration through 0.2 μm poly-
carbonate filters that had been previously acid-washed and
rinsed with Nanopure® deionized water. Absorbance of
CDOM was measured in a 10-cm quartz curvette against a
Nanopure® deionized water blank and converted to an absorp-
tion coefficient [ag(λ); Mitchell et al. 2002]. The spectral slope
of ag was calculated by linear regression of the log transformed
data between 400 and 600 nm (Nelson et al. 2004).

Chlorophyll a (Chl a) concentration of the particulate ma-
terial was determined spectrophotometrically after collection
onto GF/F filters that were then ground and extracted in 90 %
acetone (Mantoura et al. 1997). Total suspended material
(TSM) was collected onto pre-weighed Whatman Nuclepore
Track-Etch® Membrane filters (nominal pore size 0.8 μm)
under gentle vacuum and rinsed with deionized water to
remove residual salts. The filters were dried at 60 °C for
approximately 5 days and weighed to a precision of 10 μg.
The mass of each TSM sample was calculated by subtracting
the pre-sampling weight from the total post-sampling mass.
The concentration of TSM (milligrams per liter) was calculat-
ed as the ratio of sample mass to volume filtered.

Apparent Optical Properties Measured at the Sea Surface

Two floating spectroradiometer systems were utilized in tan-
dem to measure downwelling spectral irradiance [Es(0

+)]
above the sea surface (395 to 795 nm, ∼3.3 nm bandwidth),
upwelling spectral radiance 0.6 m beneath the sea surface
[Lu(0.6), HTSRB, Satlantic Instr.], and upwelling radiance
0.2 m beneath the sea surface [Eu(0.2), Lu(0.2), respectively,
HyperPro, Satlantic Instr.]. Spectral data from these sensors
were interpolated to 1 nm spectral resolution. The upwelling
diffuse attenuation coefficient (KLu ) was calculated from
Lu(0.6 m) and Lu(0.2 m)

KLu ¼ −
1

z
ln
Lu 0:6ð Þ
Lu 0:2ð Þ ð3Þ

where zwas the difference in depth between the sensors placed
at 0.6 and 0.2 m (= 0.4 m).

Upwelling radiance just beneath the air–water interface
[Lu(0

−)] was calculated by propagating Lu(0.2) to the surface
using KLu and Beers law (Kirk 1994). The water leaving
radiance above the sea surface [Lw (0+,λ)] was assumed to be
0.54Lu(0

−) (Morel and Mueller 2003). Remote sensing reflec-
tance [Rrs(λ)] was then computed as

Rrs λð Þ ¼ Lw 0þ;λð Þ
Es 0

þ;λð Þ ð4Þ

KLu and Rrs were determined over unvegetated sand, SAV, and
ODW.

Apparent Optical Properties Measured at the Seabed

Bottom reflectance spectra (Rb) of benthic types were mea-
sured using the Diver-Operated Benthic Bio-optical
Spectrometer (DOBBS) in June 2006. The DOBBS
(HydroRad-3; HOBI Labs) consists of three plane irradiance
sensors which measure upwelling [Eu] and downwelling [Ed]
irradiances near the seafloor. Two sensors were co-located on
a wand to measure Ed and Eu, just above the target. Rb was
calculated by Ed/Eu. The third sensor was placed in an Ed
configuration 1 m above the wand enabling the calculation
ofKd. Up to six readings were collected over unvegetated sand
and seagrass of varying densities at each station. Spectra
(nominally 0.3 nm resolution) were interpolated to 1 nm with
a cubic spline and smoothed using a 21-nm running average.

Bathymetry

An acoustic bathymetric survey was performed in November
2010 using boats provided by the Florida Department of
Environmental Protection. One boat was equipped with a
Garmin GPS chart plotter/depth sounder. The other boat was
equipped with a Humminbird GPS chart plotter/multibeam
sonar. Each sounding was stamped with time and position from
the GPS/chart plotter and corrected to mean low lower water
(MLLW) by removing tidal effects using NOAA benchmark
sheets and predicted tides for SJB (http://tidesandcurrents.noaa.
gov). Soundings were also corrected for deployment depth of
each transducer below the sea surface (∼10 cm).

A digital elevation model (DEM) of the study area was
generated from the corrected soundings using an inverse
distance weighting contouring procedure implemented in
ArcGIS (Fig. 3). Shoreline position was taken from National
Wetlands Inventory, with an elevation defined as 1.0 m above
the 0 (MLLW) datum. Although the resulting DEM is gener-
ally accurate, the interpolation routine did not resolve bathym-
etry in some of the channels in the highly complex lower bay.
However, this did not influence the retrievals of bottom type
or seagrass density, as the channels were generally too deep to
support seagrass.
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True water depth of each pixel in the hyperspectral imagery
was calculated by applying local tide height prediction for the
time of acquisition to the MLLW referenced DEM. The full
hyperspectral image of SJB was created from a mosaic of
several flight lines, and the resulting tidal corrections ranged
from 0 to +0.37 m.

Modeling Bottom Reflectance (Rb)

Quantitative retrieval of seagrass density necessitates removal
of the distorting effects of the overlying water column from Rrs

(Lee et al. 1994; Maritorena et al. 1994; Dierssen et al. 2003).
Here we selected an approach that was previously tested
against seagrass growing in white carbonate sand on the clear
waters of the Great Bahama Bank (Dierssen et al. 2003):

Rb ¼ Rrs � Qb

t
�

exp −KLu zbð Þ � zb
h i

exp −Kd � zbð Þ ð5Þ

where Qb represented the ratio of Eu to Lu at the base of
the water column produced by reflectance of Ed from

Fig. 3 Digital elevation model of
Saint Joseph’s Bay (MLLW)
calculated from acoustic sounding
tracks collected in November
2010 (shown as points) using an
inverse distance weighting
interpolation procedure. Acoustic
data were corrected to mean low
lower water removing tidal effects
NOAA benchmark sheets and
predicted tides for SJB (http://
tidesandcurrents.noaa.gov)
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the sea floor and estimated to be π for a lambertian
(isotropic) surface and zb represents the depth of the
water column from the DEM corrected for tidal state
and the height of the seagrass canopy (if present),
which averaged 0.5 m across the study area. The rela-
tive transmittance of Lu through the air water interface
(t) was approximated as 0.54 (Mobley 1994). The ap-
parent optical properties, KLu and Kd, were modeled

from Hydrolight® simulations using IOPs measured in
situ using the ac-9 (Fig. 1).

Calculation of Benthic Production

Daily seagrass production was estimated using a series of
transfer coefficients that convert LAI into fresh biomass, dry
biomass (Sfriso and Ghetti 1998; van Tussenbroek 1998),

Fig. 4 Remote sensing reflectance spectra measured from in situ (shaded
area mean±1 SE) and SAMSON instrumentation (solid lines mean±1
SE), over six different targets visible in the SAMSON imagery. aTerres-
trial vegetation (no in situ spectra were measured). bOptically deep water.

c Submerged sand. d Submerged aquatic vegetation. e Floating aquatic
vegetation. f Red benthic algae (no in situ spectra were measured). The
locations of bands used in classification are highlighted in each figure
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organic carbon (Hemminga and Duarte 2000), and finally to a
growth rate (Duarte and Chiscano 1999):

fresh wt g FWð Þ ¼ 500 g m−2 leaf
� �

� LAI m2 leaf m−2 seebed
� �

ð6Þ

dry wt g DWð Þ ¼ fresh wt � 0:2 g DW g−1 FW
� � ð7Þ

organic carbon g Cð Þ ¼ dry wt g DWð Þ

� 0:35 g C g−1 DW
� �

ð8Þ

growth rate gC d−1
� � ¼ organ carbon � 0:03 ð9Þ

Effects of Image Resolution on Retrieval of Seagrass
Distribution

The effect of spatial resolution on the retrieval of seagrass
ecosystem properties was explored by re-processing the at-
mospherically corrected imagery at 10, 20, 40, and 60 m
resolution using the spatial re-sampling tool in ENVI (Ver.
4.6). The coarsened images were re-processed as described
above for determination of seagrass distribution, LAI, and
system-wide productivity. Class metrics (number of patches,
mean patch area, shape index, and interspersion index) were
calculated for each resolution using FRAGSTATS v4: Spatial
Pattern Analysis Program for Categorical and Continuous
Maps (http://www.umass.edu/landeco/research/fragstats/
fragstats.html). Shape index is equal to 1 when the patch is
square and increases as patch shape becomes irregular. The
interspersion index is based on patch adjacencies; higher
values result from landscapes in which the patches have low
connectivity; low values indicate fewer patches with high
connectivity.

Results

Analysis of Reflective Targets from In Situ and Airborne Data

In situ Rrs spectra collected from ODW, unvegetated sand
(sand), SAV, and FAV were equivalent to the remotely sensed
SAMSON Rrs spectra, in both shape and magnitude (Fig. 4).
The reflectance of terrestrial vegetation (SAMSON imagery

only) generated a strong red edge that remained high across
the NIR (Fig. 4a). Reflectance spectra for ODW, sand, and
SAV targets peaked at green wavelengths around 580 nm
(Fig. 4b–d), due to water column absorption of blue and red
light. ODW presented a very dark target in which Rrs did not
exceed 0.005 sr−1 across the whole spectrum (Fig. 4b).
Unvegetated submerged sand was an order of magnitude
brighter at 580 nm than ODW, although the spectral shapes
were similar (Fig. 4c). The characteristic feature
distinguishing submerged seagrass (hereafter referred to as
SAV) from bare sand and ODW was the presence of a peak
at 700 nm (Fig. 4d), a residue of the “red edge” commonly
exhibited by plants, but in this case attenuated by the overly-
ing water column. The Rrs at 580 nm for SAV was intermedi-
ate in brightness between sand and ODW. Peaks at 705 and
810 nm (residuals of the “red edge”) were observed in pixels
containing seagrass leaves floating at the sea surface during
low tide (hereafter referred to as FAV) in the shallow southern
sections of the bay (Fig. 4e). Red algal spectra with peaks at
590 and 645 nmwere also observed in the SAMSON imagery
in shallow intertidal areas, but not visited during field work
(Fig. 4f).

NDVI (Eq. 2) were consistently positive for all marine
vegetation (SAV, FAV, and red algae), ranging from a mini-
mum of 0.05 to a maximum of 0.18 (Fig. 4d–f). NDVIs from
sand and ODW were significantly lower (one-way ANOVA
F(1,33)=91, p<0.01), consistently negative, and ranged from
−0.096 to −0.02 to (Fig. 4b, c). Optically deep water was
characterized by both Rrs values consistently <0.003 sr−1 at
710 nm and negative NDVIs. Floating aquatic vegetation was
further distinguished from SAVand red algae using values of
1.2 or greater in the ratio between peaks in reflectance at 715
and 815 nm (Fig. 4e). The double reflectance peak at 590 and
645 nm was diagnostic for red algae observed in shal-
low intertidal regions (Fig. 4f). All remaining vegetated
marine pixels were classified as SAV, which was con-
sistent with diver observations in the bay and also with
the spectral shape of the pixels mapped as SAV com-
pared to our previous studies (Dierssen et al. 2003,
2010). In summary, the NDVI and band ratios provided

Table 3 Classification accuracy matrix (Congalton 2005) with the diag-
onal values (bold) indicating the number of stations that were accurately
classified in each category

Modeled

Seagrass Sand Optically deep

Measured Seagrass 92 0 0

Sand 0 6 0

Optically deep 0 0 24

Values outside the diagonal would have been misclassified
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rigorous diagnostics for differentiating SAV, FAV red
algae, sand and ODW (Table 3).

The resulting classification algorithm yielded 3.4 km2 of
FAV, 5.3 km2 of red algae, and 14.9 km2 of SAV in the shallow
margins of the bay, totaling 23.6 km2 of vegetation, plus
13.8 km2 of optically shallow sand fringing the deeper edges
of the SAV beds and in several large sand banks across the
southern end of the bay (Fig. 5). Some areas of intermediate
brightness were visible in the imagery in approximately 2 m
water on the deep edge of SAV zones but were not classified

as optically shallow by the algorithm. Since there were no
field stations in these areas, these possible classification errors
were not included in the error matrix.

Water Column Optical Properties

Absorption by CDOM (ag) dominated the total absorption at
440 nm in June 2006 (65 % of ag) and September 2006 (72 %
of ag; Fig. 6a–c). Bulk particulate material of both non-algal
and algal origin was responsible for the remaining absorption

Fig. 5 Mapped distributions of
red algae, submerged aquatic
vegetation (SAV), floating aquatic
vegetation (FAV), and sand
benthic types identified and
overlaid on the high resolution
SAMSON pseudo-true color
image of the Saint Joseph’s Bay
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not attributable to water. The presence of seagrass did not
affect the composition of absorbing compounds in the water
column (Fig. 6a, b). However, between June and September
2006, absorption by CDOM increased, and the spectral slope
of ag nearly doubled from 0.004±SE 0.0003 to 0.007±SE
0.0004 (Fig. 6d). The median in situ bulk water column
absorption (apg) also increased between June and September
(Fig. 7a) in the blue and green region of the spectrum (412 to
555 nm, one-way ANOVA, p<0.05). However, the similarity
in apg at 650 and 676 nm between the two time periods
indicates that the differences in the blue part of the spectrum
resulted almost exclusively from an increase in CDOM ab-
sorption, but not phytoplankton or non-algal particulate ab-
sorption (ap). Despite the increase in apg, beam attenuation
(cpg=absorption plus scattering) decreased across the visible
spectrum between June and September (Fig. 7b, one-
way ANOVA, p<0.05), indicating that the particulate

scattering coefficient (b) decreased (Fig. 7c). Thus, the
increase in diffuse attenuation (Kd) (Fig. 7d) between
June to September resulted from an increase in absorp-
tion by CDOM rather than scattering by suspended
particles.

Suspended Constituents of the Water Column

There was no significant difference in the TSM load over bare
sand areas vs. those with SAV in June 2006 (Fig. 8a, ANOVA
p<0.1, mean 5.11±0.43mgm−3). September TSM loads were
significantly lower than in June (Fig. 8a, ANOVA p>0.05,
mean 3.03±0.41 mg m−3). As with TSM, there were no
significant differences in Chl a concentration between vege-
tated and unvegetated areas in June. Unlike TSM, Chl a
concentrations did not differ significantly between June and
September (Fig. 8b, ANOVA p<0.1).

Fig. 6 Cumulative plots of water column absorption components. a June
2006 over SAV. b June 2006 over bare sand areas. cSeptember 2006 over
bare sand areas. Symbols are non-algal (an; hatched), non-algal plus algal
(an+aa; gray), and non-algal, algal, and colored dissolved organic material

(an+aa+ag; white). d Comparison of mean colored dissolved organic
material absorption between June 2006 inside and outside of SAV areas
and September 2006 outside of SAVareas
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Fig. 7 In situ water column inherent optical properties from June and
September 2006. Error bars indicate ±1 SE of the mean. a Total absorp-
tion coefficient (apg). bBeam attenuation coefficient (cpg). cTotal scatter-
ing coefficient (b). All inherent optical properties were measured at nine

wavelengths (412, 440, 488, 510, 532, 555, 650, 676, 715 nm) using an
ac-9 (Wetlabs) package deployed at the surface. d Diffuse attenuation
coefficient (Kd) modeled using Hydrolightbased on measured apg and cpg

Fig. 8 Mean and standard error
of a total suspended material and
b chlorophyll a concentrations
from June and September 2006
deployments
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Modeling Bottom Reflectance (Rb)

The NDVI was useful for identifying vegetation, but deter-
mining seagrass density across the aquatic landscape required
elimination of the distorting effects of the overlying water
column to accurately quantify bottom reflectance. The overall
magnitude and spectral shape of Rb retrieved by removing
water column effects (Eq. 5) over seagrass and sand were
consistent with direct measurements obtained from the
DOBBS (Fig. 9). The RMSE between measured and modeled
spectra was 2.6 % at 555 nm and provided confidence in the
measured optical properties and the atmospheric correction of

the imagery. The strong negative relationship between log-
transformed Rb(555) and shoot density expressed as LAI (r

2=
0.81, Fig. 10) provided the mathematical basis for predicting
seagrass abundance from the digital imagery. The slope of the
relationship for stations observed in this study (−3.14±0.28)
was statistically identical to that reported for Bahamian pop-
ulations (−3.05±0.26) by Dierssen et al. (2003). The X-inter-
cept for SJB (−0.98±0.19), however, was significantly lower
than that observed by Dierssen et al. (2003) for Bahamian
seagrass (−2.64±0.37) and most likely represents the differ-
ence in reflectivity of the siliciclastic sands of SJB relative to
the carbonate sediments of the Great Bahama Bank (Dierssen

Fig. 9 Measured and modeled
bottom reflectance (Rb) over
submerged aquatic vegetation and
sand
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Fig. 10 In situ measurements of
Rb(555) and leaf area index from
Saint Joseph’s Bay. Data are
averaged from randomized
sampling of within 20 m of a
central location and are shown
with ±1 standard error bars. The
regression for this combined
dataset was used in the retrieval of
leaf area index from modeled
Rb(555). The relationship between
LAI and Rb(555) for Bahamas
seagrass (Dierssen et al. 2003) is
provided for reference

Fig. 11 Modeled data
representing the effect of bending
angle of seagrass shoots on the
relationship between Rb(555) and
leaf area index

Estuaries and Coasts (2014) 37:1467–1489 1481



et al. 2003) (Fig. 10). However, linearity of the Rb vs. LAI
slope can be sensitive to the geometric orientation of the
submerged plant canopy. The relationship is linear over
the largest range of LAI when the canopy is nearly
vertical (<25°) relative to the viewing angle (Fig. 11).
Although SAMSON’s air-incident viewing angle of 23°
is close to the 25° threshold for non-linearity, Snell’s
law reduced the in-water viewing angle to only 9°, well
within the linear region. However, the LAI required to
saturate Rb (555) decreases as the leaves become more
horizontal relative to the viewing angle. Such large
bending angles can occur in strong unidirectional cur-
rents and particularly during low tides that create a
floating surface canopy (Fig. 12).

The mean seagrass LAI retrieved from SAMSON was
2.0±0.6 m2 m−2 (Fig. 13). No seagrass signatures were
detected on the ocean side of the peninsula that sepa-
rates the bay from the Gulf of Mexico. Seagrass LAI
measured in situ ranged between 1 and 2 m2 m−2 across
the bay with a maximum around 3.3 m2 m−2 (Table 2).
Large sections of seagrass meadows in the very shallow
southern end of the bay were identified as FAV from
which LAI could not be retrieved directly because of
signal saturation (Fig. 11). In situ measurements of
seagrass density within these FAV areas produced a
mean LAI of 2.3±0.42 m2 m−2.

Calculation of Benthic Production

The conversion of remotely sensed LAI into seagrass carbon
yielded 17,705 t of seagrass C in SJB, distributed as
83 t C km−2 of SAV and 70 t C km−2 of FAV (Table 4).
Assuming a daily growth rate of 3 % (Zieman et al. 1989),
the seagrass population represents a carbon production rate for
the entire bay of 37.1 t day−1. Annually, this represents a

production rate of 13,570 t C year−1. By comparison, we
estimate phytoplankton production within the bay to be about
19,614 t C year−1, based on an average Chl a concen-
tration of 1.7 mg m−3 and euphotic depth of 10.9 m
(defined by the depth where Ed(z)=0.1Ed(0) and average
measured Kd(PAR) of 0.42 m−1). Thus, although
seagrass occupies only 17 % of the surface area, they
are likely responsible for 41 % of the annual primary
production of Saint Joseph’s Bay.

Effects of Image Resolution on Retrieval of Seagrass
Distribution

Coarsening the spatial resolution of the imagery from 1 to
10 m decreased retrieval of biomass for SAV by about 10 %,
but further coarsening up to 60 m pixels did not produce any
further change in retrieval bias (Fig. 14a, b). Degrading the
spatial resolution increased the biomass retrieval of FAV, a
much brighter target than SAV. Since SAVwasmore abundant
than FAV, coarsening the spatial resolution decreased the
estimate of total vegetation by 7 %. The same pattern was
seen in retrieval of area; SAVarea was underestimated by 8 %
and red algae area by 4 % (Fig. 14b). Conversely the total area
of brighter targets such as sand and FAV were overestimated
by 10 and 12 %, respectively. Seagrass in the southern section
of the bay was distributed primary as one large patch,
representing about 70 % of the total vegetated area, and
95 % of total vegetated area was distributed into 20 patches
or less, regardless of image resolution. Larger pixel size re-
sulted in the merger of SAV into fewer but larger patches that
were more irregular in shape and more aggregated within the
landscape (Table 5).

Unusual Geomorphic Features

In addition to quantifying the distribution of SAV, the imagery
revealed nearly 1,000 uniform dark patches with a mean
diameter of 18 m (±SE 1 m) along the southeastern margin
of the bay (Fig. 15). The largest dark patch was nearly 60 m in
diameter, and the smallest detected by the imagery was 1 m. In
situ inspection of a few patches revealed them to be optically
deep (geometric depths >2 m) hemispherical depressions,
surrounded by a narrow ring of sand which graded into
seagrass on the surrounding flats. The extent of these holes
was not evident from initial in situ surveys, but local knowl-
edge indicated that they are old aerial bomb craters resulting
from military training activity during World War II.

Discussion

The level of spectral detail provided by SAMSON enabled us
to distinguish fine scale spectral features necessary for the

Fig. 12 Photograph of seagrass canopy (FAV) in Saint Joseph’s Bay at
low tide taken in seagrass meadow south of station 6
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retrieval and separation of submerged aquatic vegetation,
floating aquatic vegetation, red algae, bare sand, and optically
deep water in the highly productive and highly colored coastal
waters of Saint Joseph’s Bay, Florida. Although inter-
species differences in the spectral reflectance of seagrass
have been identified in a lab setting (Fyfe 2003), we
were unable to distinguish among seagrass species due
to the mixed nature of the beds and the highly attenu-
ating environment.

Look-up tables and inverse radiative transfer methods have
proven to be successful in the retrieval of benthic types in the
clear tropical waters of the Bahamas, Caribbean, and Australia
(Lee et al. 1999; Dierssen et al. 2003; Kutser et al. 2006;
Lesser and Mobley 2007; Dekker et al. 2011). However, the
waters of SJB were an order of magnitude less transparent
than those measured in the Great Bahamas Bank seagrass
systems (Dierssen et al. 2010) and more attenuating than
values observed in the Florida Bay seagrass meadows

Fig. 13 Distribution of seagrass
leaf area index from 0 to
3 m2 leaf m−2 seafloor estimated
across Saint Joseph’s Bay,
Florida, USA from SAMSON
hyperspectral imagery
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(McPherson et al. 2011). Thus, the ability to faithfully retrieve
seabed reflectance and seagrass density reveals the versatility
of this radiative transfer approach even for optically complex
and fairly turbid coastal environments such as we encountered
in SJB.

In addition to high spectral resolution, the high spatial
resolution provided by SAMSON was important for charac-
terizing landscape-scale statistics of seagrass distribution.
Increasing pixel size causes the signals from bright targets
(e.g., sand) to overwhelm dark ones (seagrass) in mixed
pixels. As a result, increasing the pixel size above 10 m
produced an underestimation of up to 8 % in retrieved SAV
and red algae area and an overestimation of 10 to 12 % in
retrieved FAV and sand area. In addition, the coarser spatial
resolution caused patches to merge and become more uniform
(spherical) in shape. The resulting loss of spatial complexity
may have important implications for estimating patch dimen-
sion and connectivity, which are critical for understanding the
effect of habitat fragmentation on survival of juvenile species
(Hovel and Lipcius 2001) and the study of recruitment,
spreading, infilling, and disturbance of seagrass meadows
(Bell et al. 1999).

The need for routine coverage of coastal regions is moving
us from airborne to spaceborne remote sensing platforms, but
none of the orbiting sensors can, at present, provide the high
spectral and spatial resolution of aircraft systems. Current
sensors with fine spatial resolution (∼2 m) are multispectral
(WorldView2) with 50- to 60-nm-wide bins which are inef-
fective for detecting the narrow spectral signatures (∼10 to
20 nm) observed in the NIR that characterize submerged
vegetation. Sensors with high spectral resolution (DLR’s
EnMap, ONR’s HICO, and NASA’s planned HyspIRI) have
coarse spatial resolution (30 to 100 m) which incurs errors in

biomass and landscape scale statistics in heterogeneous coast-
al environments. Pan sharpening techniques that involve the
merging of imagery from sensors with different spatial/
spectral capabilities may provide at pathway for developing
merged data products with improved spatial resolution that
may partially compensate for the limited capabilities of indi-
vidual sensors (Garzelli et al. 2004; Akula et al. 2012).

This study was able to exploit a rich data set that enabled
atmospheric correction of the SAMSON imagery and removal
of the spectral distortions in Rrs caused by the overlying water
column to achieve accurate estimates of bottom reflectance for
all optically shallow pixels within the study area. Of particular
importance in this analysis was the availability of an accurate
DEMderived from the acoustic survey, as the required vertical
resolution in bathymetry (∼10 cm) could not be derived from
the passive optical remote sensing of these optically
complex waters (Lee et al. 1999; Mobley et al. 2005).
Future studies, however, should be able to repeat the
analysis with less in situ data by inverting Eq. 5 for
pixels containing bare sand to solve for Kd and KLu ,
assuming constancy in the reflectance properties of bare
sand and continued accuracy of our DEM.

The consistency of the Rb vs. LAI slope suggests a rela-
tionship that can transcend locations, at least for seagrass leaf
reflectance, which, because of package effects, are not all that
different optically (10–20 %), even though pigment concen-
trations can vary by 5× (Cummings and Zimmerman 2003;
Zimmerman 2003). The intercept (LAI=0), however, is con-
trolled by brightness of the underlying substrate, which can
vary by an order of magnitude among sediments from bright
carbonate sand [R(555)=0.4, Bahamas] to siliciclastic sand
[R(555)=0.2, SJB] to fine siliciclastic muds [R(555)=0.04;
Louchard et al. 2003; Zimmerman 2003].

Seagrasses continue to be an ecologically important
component of SJB in terms of areal coverage, standing
biomass, and total productivity. Prior mapping of
seagrasses in SJB is limited to uniform distributions
within polygons derived from aerial photography
(McNulty et al. 1972), and dense, medium, and sparse
classes are determined using a multispectral scanner
(Savastano et al. 1984). These techniques yielded rela-
tive abundances and areal coverage but not absolute
abundances. The high spatial and spectral resolution
available from SAMSON provided absolute densities in
terms of physical units and textural resolution including
distinguishing densities on sand ripples and small-scale
geographical resolution. When compared to these previ-
ous maps of seagrass coverage, areas of dense seagrass
were still found to be dense and sparse areas still
sparse, showing that seagrasses appear to be relatively
stable in this area.

Despite high and apparently variable levels of
CDOM, SAV populations appear to be relatively stable

Table 4 Estimates of areal coverage, standing stocks and productivity of
submerged aquatic vegetation, floating aquatic vegetation, benthic red
algae, and phytoplankton within Saint Joseph’s Bay, as determined from
SAMSON imagery

SAV FAV Red
algae

Phytoplankton

Total area (km2) 14.9 3.4 5.3 116

Total fresh biomass (t) 14,341 3,364 No data No data

Total dry biomass (t) 2,686 673 No data No data

Total carbon (t C) 1,003 235 No data 107

Carbon per unit area
(t C km−2)

83 70 No data 0.9

Growth rate (day−1) 3 % 3 % No data 50 %

Daily production (t C day−1) 30 7.1 No data 53

Annual production
(t C year−1)

10,992 2,578 No data 19,614

SAV submerged aquatic vegetation, FAV floating aquatic vegetation
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since at least 1972. Our estimate of 24 km2 is remark-
ably consistent with the estimate of 25.6 km2 derived
from aerial photography in 1972 (McNulty et al. 1972)
and a 1984 estimate of 23 to 24 km2 derived from an
early multispectral airborne sensor (Savastano et al.
(1984)). Assuming the limit for potential expansion of
seagrasses in SJB is driven by the light environment,
the average Kd(440) of 0.9 m−1 measured in this study
was consistent with a 10 % isolume located at 2.5 m.

Reducing Kd (440) by half to 0.5 m−1 could increase the
depth of the 10 % isolume to 4.6 m, but because of the
relatively steep drop in bathymetry around the bay,
doubling the light penetration would only increase the
area of potential seagrass habitat by approximately
0.03 km2, less than 1 % of the current estimate. This
small increase in SAV habitat in response to improved
water transparency is due primarily to the characteristic
topography of SJB in which the deep central basin

Fig. 14 Relationship between
pixel size and retrieval of a
biomass and b area of benthic
types. Data are from the southern
end of Saint Joseph’s Bay;
imagery was resampled using
ENVI 4.6 to pixel sizes ranging
from 10 to 60 m. All data are
plotted relative to retrieved values
from the 1-m imagery
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limits seagrass to the shallow sandy banks near the
shore. Doubling the average Kd (440) to 1.8 m−1 would
shoal the 10 % isolume to 1.3 m, resulting in an overall
reduction in SAV area of 3.3 %. While this is a small
fraction of the current area, the impact of increased light
attenuation on SAV density within this survival zone is

as yet undetermined. Maintaining the current optical
properties should be a benchmark of the Florida coastal
management.

Seagrass remote sensing is rapidly moving from the qual-
itative to the quantitative realm, with real ability to translate
image properties into biogeochemical stocks and rates. The

Table 5 Effect of pixel resolution on SAV patch metrics from the southern end of Saint Joseph’s Bay, Florida, USA

Class metric 1 m 10 m 20 m 40 m 60 m

Number of patches 72,593 1,623 518 238 143

Mean area (m2) 155 6,439 20,195 42,864 71,572

Median area (m2) 1 100 400 1,600 3,600

Maximum area (m2) 7,897,179 7,323,200 7,210,000 7,259,200 7,574,400

Minimum area (m2) 1 100 400 1,600 3,600

Shape index 1.19 1.21 1.54 1.54 1.5

Interspersion index 94 97 96 24 26

The original 1-m resolution imagery was resampled using ENVI 4.6 to pixel sizes ranging from 10 to 60 m. Patch metrics were calculated using FRAGS
TATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Available at the following web site: http://www.umass.edu/landeco/
research/fragstats/fragstats.html. The shape index is 1 for square patches and increases as patch shape becomes irregular. The interspersion index is a
measure of patch adjacency; higher values result from landscapes in which the patches have low connectivity; low values indicate fewer patches with
high connectivity

Fig. 15 Enlarged region from Fig. 13 showing unidentified craters (mean diameter 8 m) distributed along the shallow southeast margin of the bay
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approach presented here represents an important advancement
in understanding and interpreting system dynamics relative to
semi-quantitative measures (i.e., spatial coverage of SAV
pixels) derived from un-calibrated imagery such as aerial
photography (Meehan et al. 2005). These advances will be
important for our future ability to detect change and evaluate
ecosystem health in the context of climate change that results
in deteriorating coastal water quality, global warming, and
ocean acidification.
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