Plymouth Marine Laboratory

Marine Matters

Symposium at the European Parliament, Brussels, 6 March 2012

A Blueprint for Oceans and Coasts at the UN Conference on Sustainable Development (Rio+20, June 2012) Issues, Challenges and Solutions

Ocean Acidification Dr Carol Turley

What is Ocean Acidification?

This is resulting in increased carbon dioxide (CO_2) in the atmosphere causing global warming

Mankind is burning fossil fuel

Oceans are vast and are taking up the CO_2

When CO₂ is added to water it becomes an acid...

...so the oceans are become more acidic, lowering the pH of seawater

..it is happening now and is measurable

The root of the problem – CO₂ chemistry in seawater

- Oceans have already taken up 28% atmospheric CO₂ emissions
- **Decrease in pH (increase in H+)**
- Decrease in carbonate ions key in controlling calcification of shells and skeletons

Oceans are Acidifying Fast

"Today is a rare event in the history of the World"

- It is happening now, at a *speed* and to a level not experienced by marine organisms for about 60 million years
- •Mass extinctions linked to previous ocean acidification events
- Takes 10,000's of years to recover

Mounting Evidence: that future CO₂ emissions could impact some marine organisms and ecosystems this century

Biological effects of ocean acidification

- •139 experiments significant reduction in survival, calcification, growth and reproduction in very many species
- •But processes are not yet well-understood, variability is high and ecosystem effects (and their socio-economic impacts) are uncertain

Impact on invertebrates, many are food providing

Heliocidaris erythrogra

Hemicentrotus pulche

Oikopleura dioicea

BRYOZOANS Myriapora truncata

Dupont pers. comm.

Key links in the food chain show vulnerability....

Krill embryo development

Normal krill embryo development

Abnormal krill embryo development

Kawaguchi et al. 2010

Pteropods shell growth

Arctic *Limacina helicina* stained with calcein. 30% reduction of the calcification rate at pH 7.8. Comeau et al. 2009

Brittlestar larval - 100% mortality in 7 days with a -0.2 pH. Dupont et al. 2010

CO₂ seeps in coral reefs off Papua New Guinea

Ocean acidification leads to loss in diversity, structural complexity. No reef development at <7.8 pH.

A vision of the future of coral reefs in a high CO₂ world?

Potential Vulnerabilities in Relation to Human Life spans -

what it might mean to us and our children

Multiple Stressors – Hotspots of Multiple Impacts

Acidification + Warming + Oxygen loss

Data source: Sea Around Us project, (University of British Columbia, http://www.seaaroundus.org). Map designed by Dr. Rea Watson (http://ecomarres.com). Used with permission.

Nicolas Gruber, Phil. Trans. R. Soc. A (2011) 369, 1980-1996

Change to biodiversity and ecosystems, and the goods and services they provide can be expected.

Important fisheries areas are vulnerable: upwellings, estuaries, polar waters, coastal waters and tropical coral reefs.

What can we do?

As major ocean change continues, governments will face increased pressure to adopt adaptive policy instruments at the local, national, and international levels

Global Action - the real fix:

- Rapid and substantial cuts to CO₂ emissions
- Effective international planning and financing for adaptation

Regional and Local Action - buying time to implement the global solution:

- Determine vulnerabilities
- Reduce local sources
- Reduce other pressures
- Identify flexible and resistant species
- Explore other production options