I. Introduction
II. The Basics of Climate Change and the Ocean
III. Coastal and Ocean Species Migration due to Climate Change
IV. Hypoxia (Dead Zones)
V. The Effects of Warming Waters
VI. Marine Biodiversity Loss due to Climate Change
VII. The Effects of Climate Change on Coral Reefs
VIII. The Effects of Climate Change on the Arctic and Antarctic
IX. Policy and Government Publications
X. Looking for More? (Additional Resources)


I. Introduction

The ocean makes up 71% of the planet and provides many services to human communities from mitigating weather extremes to generating the oxygen we breathe, from producing the food we eat to storing the excess carbon dioxide we generate. However, the effects of increasing greenhouse gas emissions threaten coastal and marine ecosystems through changes in ocean temperature and melting of ice, which in turn affect ocean currents, weather patterns, and sea level. And, because the carbon sink capacity of the ocean has been exceeded, we are also seeing the ocean’s chemistry change because of our carbon emissions. In fact, mankind has increased the acidity of our ocean by 30% over the past two centuries. (This is covered in our Research Page on Ocean Acidification).

The ocean and climate are inextricably linked. The ocean plays a fundamental role in mitigating climate change by serving as a major heat and carbon sink. The ocean also bears the brunt of climate change, as evidenced by changes in temperature, currents and sea level rise, all of which affect the health of marine species, nearshore and deep ocean ecosystems. As concerns about climate change increase, the interrelationship between the ocean and climate change must be recognized, understood, and incorporated into governmental policies.

Since the Industrial Revolution, the amount of carbon dioxide in our atmosphere has increased by over 35%, primarily from the burning of fossil fuels. Ocean waters, ocean animals, and ocean habitats all help the ocean absorb a significant portion of the carbon dioxide emissions from human activities. 

The global ocean is already experiencing the significant impact of climate change and its accompanying effects. They include air and water temperature warming, seasonal shifts in species, coral bleaching, sea level rise, coastal inundation, coastal erosion, harmful algal blooms, hypoxic (or dead) zones, new marine diseases, loss of marine mammals, changes in levels of precipitation, and fishery declines. In addition, we can expect more extreme weather events (droughts, floods, storms), which affect habitats and species alike. To protect our valuable marine ecosystems, we must act.

The overall solution to climate change is to significantly reduce the emission of greenhouse gases. The most recent international agreement to address climate change, the Paris Agreement, entered into force in 2016. Meeting the targets of the Paris Agreement will require action at international, national, local and community levels around the world. Additionally, blue carbon may provide a method for the long-term sequestration and storage of carbon. “Blue Carbon” is the carbon dioxide captured by the world’s ocean and coastal ecosystems. This carbon is stored in the form of biomass and sediments from mangroves, tidal marshes, and seagrass meadows. More information about Blue Carbon can be found here.

Simultaneously, it is important to the health of the ocean—and us—that additional threats are avoided, and that our marine ecosystems are managed thoughtfully. It is also clear that by reducing the immediate stresses from excess human activities, we can increase the resilience of ocean species and ecosystems. In this way, we can invest in ocean health and its “immune system” by eliminating or reducing the myriad of smaller ills from which it suffers. Restoring abundance of ocean species—of mangroves, of seagrass meadows, of corals, of kelp forests, of fisheries, of all ocean life—will help the ocean continue to provide the services on which all life depends.

The Ocean Foundation (T.O.F.) and its current staff have been working on oceans and climate change issues since 1990; on Ocean Acidification since 2003; and on related “blue carbon” issues since 2007. The Ocean Foundation hosts the Blue Resilience Initiative that seeks to advance policy that promotes the roles coastal and ocean ecosystems play as natural carbon sinks, i.e. blue carbon and released the first-ever Blue Carbon Offset Calculator in 2012 to provide charitable carbon offsets for individual donors, foundations, corporations, and events through the restoration and conservation of important coastal habitats that sequester and store carbon, including seagrass meadows, mangrove forests, and saltmarsh grass estuaries. The Ocean Foundation staff serve on the advisory board for the Collaborative Institute for Oceans, Climate and Security, and The Ocean Foundation is a member of the Ocean & Climate Platform. Since 2014, T.O.F. has provided ongoing technical advice on the Global Environment Facility (GEF) International Waters focal area that enabled the GEF Blue Forests Project to provide the first global-scale assessment of the values associated with coastal carbon and ecosystem services. T.O.F. is currently leading a seagrass and mangrove restoration project at the Jobos Bay National Estuarine Research Reserve in close partnership with the Puerto Rico Department of Natural and Environmental Resources. 

Back to Top

II. The Basics of Climate Change and the Ocean

Hoegh-Guldberg, O., Caldeira, K., Chopin, T., Gaines, S., Haugan, P., Hemer, M., …, & Tyedmers, P. (2019, September 23) The Ocean as a Solution to Climate Change: Five Opportunities for Action. High Level Panel for a Sustainable Ocean Economy. Retrieved from: https://dev-oceanpanel.pantheonsite.io/sites/default/files/2019-09/19_HLP_Report_Ocean_Solution_Climate_Change_final.pdf

Ocean-based climate action can play a major role in reducing the world’s carbon footprint delivering up to 21% of the annual greenhouse gas emission cuts as pledged by the Paris Agreement. Published by the High-Level Panel for a Sustainable Ocean Economy, a group of 14 heads of states and governments at the U.N. Secretary-General’s Climate Action Summit this in-depth report highlights the relationship between the ocean and climate. The report presents five areas of opportunities including ocean-based renewable energy; ocean-based transportation; coastal and marine ecosystems; fisheries, aquaculture, and shifting diets; and carbon storage in the seabed.

Kennedy, K. M. (2019, September). Putting a Price on Carbon: Evaluating a Carbon Price and Complementary Policies for a 1.5 degree Celsius World. World Resources Institute. Retrieved from: https://www.wri.org/publication/evaluating-carbon-price

It is necessary to put a price on carbon in order to reduce carbon emissions to the levels set by the Paris Agreement. Carbon price is a charge applied to entities that produce greenhouse gas emissions to shift the cost of climate change from society to entities responsible for emissions while also providing an incentive to reduce emissions. Additional policies and programs to spur innovation and make local-carbon alternatives more economically attractive are also necessary to achieve long-term results.

Macreadie, P., Anton, A., Raven, J., Beaumont, N., Connolly, R., Friess, D., …, & Duarte, C. (2019, September 05) The Future of Blue Carbon Science. Nature Communications, 10(3998). Retrieved from: https://www.nature.com/articles/s41467-019-11693-w

The role of Blue Carbon, the idea that coastal vegetated ecosystems contribute disproportionately large amounts of the global carbon sequestration, plays a major role in international climate change mitigation and adaptation. Blue Carbon science continues to grow in support and is highly likely to broaden in scope through additional high-quality and scalable observations and experiments and increased multidisciplinary scientist from a variety of nations.

Heneghan, R., Hatton, I., & Galbraith, E. (2019, May 3). Climate change impacts on marine ecosystems through the lens of the size spectrum. Emerging Topics in Life Sciences, 3(2), 233-243. Retrieved from: http://www.emergtoplifesci.org/content/3/2/233.abstract

Climate change is a very complex issue that is driving countless shifts across the world; particularly it has caused serious alterations in the structure and function of marine ecosystems. This article analyzes how the underused lens of abundance-size spectrum can provide a new tool for monitoring ecosystem adaptation.

Rush, E. (2018). Rising: Dispatches from the New American Shore. Canada: Milkweed Editions. 

Told via a first person introspective, author Elizabeth Rush discusses the consequences vulnerable communities face from climate change. The journalistic-style narrative weaves together the true stories of communities in Florida, Louisiana, Rhode Island, California, and New York who have experienced the devastating effects of hurricanes, extreme weather, and rising tides due to climate change.

Goodell, J. (2017). The Water Will Come: Rising Seas, Sinking Cities, and the Remaking of the Civilized World. New York, New York: Little, Brown, and Company. 

Told through personal narrative, author Jeff Goodell considers the rising tides around the world and its future implications. Inspired by Hurricane Sandy in New York, Goodell’s research takes him around the world to consider the dramatic action needed to adapt to the rising waters. In the preface, Goodell correctly states that this is not the book for those looking to understand the connection between climate and carbon dioxide, but what the human experience will look like as the sea levels rise.

Laffoley, D., & Baxter, J. M. (2016, September). Explaining Ocean Warming: Causes, Scale, Effects, and Consequences. Full Report. Gland, Switzerland: International Union for Conservation of Nature.

The International Union for Conservation of Nature presents a detailed fact-based report on the state of the ocean. The report finds that sea surface temperature, ocean heat continent, sea-level rise, melting of glaciers and ice sheets, CO2 emissions and atmospheric concentrations are increasing at an accelerating rate with significant consequences for humanity and the marine species and ecosystems of the ocean. The report recommends recognition of the severity of the issue, concerted joint policy action for comprehensive ocean protection, updated risk assessments, addressing gaps in science and capability needs, acting quickly, and achieving substantial cuts in greenhouse gases. The issue of a warming ocean is a complex issue that will have wide-ranging effects, some may be beneficial, but the vast majority of effects will be negative in ways that are not yet fully understood.

Poloczanska, E., Burrows, M., Brown, C., Molinos, J., Halpern, B., Hoegh-Guldberg, O., …, & Sydeman, W. (2016, May 4). Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science. Retrieved from: doi.org/10.3389/fmars.2016.00062

Marine species are responding to the effects of greenhouse gas emissions and climate change in expected ways. Some responses include poleward and deeper distributional shifts, declines in calcification, increased abundance of warm-water species, and loss of entire ecosystems (e.g. coral reefs). The variability of marine life response to shifts in calcification, demography, abundance, distribution, phenology is likely to lead to ecosystem reshuffling and changes in function that necessitate further study. 

Gattuso, J.P., Magnan, A., Billé, R., Cheung, W.W., Howes, E.L., Joos, F., & Turley, C. (2015, July 3). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243). Retrieved from: doi.org/10.1126/science.aac4722 

In order to adapt to anthropogenic climate change, the ocean has had to profoundly alter its physics, chemistry, ecology, and services. The current emissions projections would rapidly and significantly alter ecosystems that humans heavily depend upon. The management options to address the changing ocean due to climate change narrows as the ocean continues to warm and acidify. The article successfully synthesizes recent and future changes to the ocean and its ecosystems, as well as to the goods and services those ecosystems provide to humans.

The Institute for Sustainable Development and International Relations. (2015, September). Intertwined Ocean and Climate: Implications for International Climate Negotiations. Climate – Oceans and Coastal Zones: Policy Brief. Retrieved from: https://www.iddri.org/en/publications-and-events/policy-brief/intertwined-ocean-and-climate-implications-international

Providing an overview of policy, this brief outlines the intertwined nature of the ocean and climate change, calling for immediate CO2 emission reductions. The article explains the significance of these climate-related changes in the ocean and argues for ambitious emissions reductions at the international level, as increases in carbon dioxide will only become harder to tackle. 

Stocker, T. (2015, November 13). The silent services of the world ocean. Science, 350(6262), 764-765. Retrieved from: https://science.sciencemag.org/content/350/6262/764.abstract

The ocean provides crucial services to the earth and to humans that are of global significance, all of which come with an increasing price caused by human activities and increased carbon emissions. The author emphasizes that the need for humans to consider the impacts of climate change on the ocean when considering adaptation to and mitigation of anthropogenic climate change, especially by intergovernmental organizations.

Levin, L. & Le Bris, N. (2015, November 13). The deep ocean under climate change. Science, 350(6262), 766-768. Retrieved from: https://science.sciencemag.org/content/350/6262/766

The deep ocean, despite its critical ecosystem services, is often overlooked in the realm of climate change and mitigation. At depths of 200 meters and below, the ocean absorbs vast amounts of carbon dioxide and needs specific attention and increased research to protect its integrity and value.

McGill University. (2013, June 14) Study of Oceans’ Past Raises Worry About Their Future. ScienceDaily. Retrieved from: sciencedaily.com/releases/2013/06/130614111606.html

Humans are changing the amount of nitrogen available to fish in the ocean by increasing the amount of CO2 in our atmosphere. Findings show it will take centuries for the ocean to balance the nitrogen cycle. This raises concerns about the current rate of CO2 entering our atmosphere and it shows how the ocean may be changing chemically in ways we wouldn’t expect.
The article above provides a brief introduction into the relationship between ocean acidification and climate change, for more detailed information please see The Ocean Foundation’s resource pages on Ocean Acidification.

Doney, S., Ruckelshaus, M., Duffy, E., Barry, J., Chan, F., English, C., …, & Talley, L. (2012, January). Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, 4, 11-37. Retrieved from: https://www.annualreviews.org/doi/full/10.1146/annurev-marine-041911-111611

In marine ecosystems, climate change is associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification. There are also strong linkages between climate and species distributions, phenology, and demography. These could eventually affect the overall ecosystem functioning and services upon which the world depends.

Vallis, G. K. (2012). Climate and the Ocean. Princeton, New Jersey: Princeton University Press.

There is a strong interconnected relationship between the climate and the ocean demonstrated through plain language and diagrams of scientific concepts including systems of wind and currents within the ocean. Created as an illustrated primer, Climate and the Ocean serves as an introduction into the ocean role as a moderator of the Earth’s climate system. The book allows readers to make their own judgements, but with the knowledge to understand generally the science behind the climate.

Spalding, M. J. (2011, May). Before the Sun Sets: Changing Ocean Chemistry, Global marine Resources, and the Limits of Our Legal Tools to Address Harm. International Environmental Law Committee Newsletter, 13(2). PDF.

Carbon dioxide is being absorbed by the ocean and affecting the pH of the water in a process called ocean acidification. International laws and domestic laws in the United States, at the time of writing, have the potential to incorporate ocean acidification polices, including the U.N. Framework Convention on Climate Change, the U.N. Convention on the Laws of the Sea, the London Convention and Protocol, and the U.S. Federal Ocean Acidification Research and Monitoring (FOARAM) Act. The cost of inaction will by far exceed the economic cost of acting, and present-day actions are needed.

Spalding, M. J. (2011). Perverse Sea Change: Underwater Cultural Heritage in the Ocean is Facing Chemical and Physical Changes. Cultural Heritage and Arts Review, 2(1). PDF.

Underwater cultural heritage sites are being threatened by ocean acidification and climate change. Climate change is increasingly altering the ocean’s chemistry, raising sea levels, warming ocean temperatures, shifting currents and increasing weather volatility; all of which affect the preservation of submerged historical sites. Irreparable harm is likely, however, restoring coastal ecosystems, reducing land-based pollution, reducing CO2 emissions, reducing marine stressors, increasing historic site monitoring and developing legal strategies can reduce the devastation of underwater cultural heritage sites.

Hoegh-Guldberg, O., & Bruno, J. (2010, June 18). The Impact of Climate Change on the World’s Marine Ecosystems. Science, 328(5985), 1523-1528. Retrieved from: https://science.sciencemag.org/content/328/5985/1523

Rapidly rising greenhouse gas emissions are driving the ocean toward conditions that haven’t been seen for millions of years and is causing catastrophic effects. So far, anthropogenic climate change has caused decreased ocean productivity, altered food web dynamics, reduced abundance of habitat-forming species, shifting species distribution, and greater incidences of disease.

Spalding, M. J., & de Fontaubert, C. (2007). Conflict Resolution for Addressing Climate Change with Ocean-Altering Projects. Environmental Law Review News and Analysis. Retrieved from: https://cmsdata.iucn.org/downloads/ocean_climate_3.pdf

There is a careful balance between local consequences and global benefits particularly when considering the detrimental effects from wind and wave energy projects. There is a need for the application of conflict resolution practices to be applied to coastal and marine projects that are potentially damaging to the local environment, but are necessary to reduce reliance on fossil fuel. Climate change must be addressed and some of the solutions will take place in marine and coastal ecosystems, to mitigate conflict conversations must involve policy makers, local entities, civil society, and at the international level to ensure the best available actions will be taken.

Spalding, M. J. (2004, August). Climate Change and Oceans. Consultative Group on Biological Diversity. Retrieved from: http://markjspalding.com/download/publications/peer-reviewed-articles/ClimateandOceans.pdf

The ocean provides many benefits in terms of resources, climate moderation, and aesthetic beauty. However, greenhouse gas emissions from human activities are projected to alter coastal and marine ecosystems and exacerbate traditional marine problems (over-fishing and habitat destruction). Yet, there is opportunity for change through philanthropic support to integrate the ocean and climate to enhance the resilience of the ecosystems most at risk from climate change.

Bigg, G.R., Jickells, T.D., Liss, P.S., & Osborn, T.J. (2003, August 1). The Role of The Oceans in Climate. International Journal of Climatology, 23, 1127-1159. Retrieved from: doi.org/10.1002/joc.926

The ocean is a vital component of the climate system. It is important in the global exchanges and redistribution of heat, water, gases, particles, and momentum. The freshwater budget of the ocean is decreasing and is a key factor for the degree and longevity of climate change.

Dore, J.E., Lukas, R., Sadler, D.W., & Karl, D.M. (2003, August 14). Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. Nature, 424(6950), 754-757. Retrieved from: doi.org/10.1038/nature01885

Carbon dioxide uptake by ocean waters can be strongly influenced by changes in regional precipitation and evaporation patterns brought on by climate variability. Since 1990, there has been a significant decrease in the strength of the CO2 sink, which is due to the increase of partial pressure of ocean surface CO2 caused by evaporation and the accompanying concentration of solutes in the water.

Revelle, R., & Suess, H. (1957). Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase in Atmospheric CO2 during the Past Decades. La Jolla, California: Scripps Institution of Oceanography, University of California.

The amount of CO2 in the atmosphere, on the rates and mechanisms of CO2 exchange between the sea and the air, and the fluctuations in marine organic carbon have been studied since shortly after the beginning of the Industrial Revolution. Industrial fuel combustion since the start of the Industrial Revolution, more than 150 years ago, has caused an increase of the average ocean temperature, a decrease in the carbon content of soils, and a change in the amount of organic matter in the ocean. This document served as a key milestone in the study of climate change and has greatly influenced scientific studies in the half century since its publication.

Back to top

III. Coastal and Ocean Species Migration due to the Effects of Climate Change

Whitcomb, I. (2019, August 12). Droves of Blacktip Sharks Are Summering in Long Island for the First Time. LiveScience. Retrieved from: livescience.com/sharks-vacation-in-hamptons.html

Every year, blacktip sharks migrate north in the summer seeking cooler waters. In the past, the sharks would spend their summers off the coast of the Carolinas, but due to the warming waters of the ocean, they must travel further north to Long Island to find cool enough waters. At the time of publication, whether the sharks are migrating farther north on their own or following their prey farther north is unknown.

Fears, D. (2019, July 31). Climate change will spark a baby boom of crabs. Then predators will relocate from the south and eat them. The Washington Post. Retrieved from: https://www.washingtonpost.com/climate-environment/2019/07/31/climate-change-will-spark-blue-crab-baby-boom-then-predators-will-relocate-south-eat-them/?utm_term=.3d30f1a92d2e

Blue crabs are thriving in the warming waters of the Chesapeake Bay. With the current trends of warming waters, soon blue crabs will no longer need to burrow in the winter to survive, which will cause the population to soar. The population boom may lure some predators to new waters.

Furby, K. (2018, June 14). Climate change is moving fish around faster than laws can handle, study says. The Washington Post. Retrieved from: washingtonpost.com/news/speaking-of-science/wp/2018/06/14/climate-change-is-moving-fish-around-faster-than-laws-can-handle-study-says

Vital fish species such as salmon and mackerel are migrating to new territories necessitating increased international cooperation to ensure abundance. The article reflects on the conflict that can arise when species cross national boundaries from the perspective of a combination of law, policy, economics, oceanography, and ecology. 

National Oceanic and Atmospheric Administration. (2013, September). Two Takes on Climate Change in the Ocean? National Ocean Service: The United States Department of Commerce. Retrieved from: http://web.archive.org/web/20161211043243/http://www.nmfs.noaa.gov/stories/2013/09/9_30_13two_takes_on_climate_change_in_ocean.html

Marine life throughout all parts of the food chain is shifting towards the poles to stay cool as things heat up and these changes can have significant economic consequences. Species shifting in space and time are not all happening at the same pace, therefore disrupting the food web and the delicate patterns of life. Now more than ever is it important to prevent overfishing and continue to support long-term monitoring programs.

Poloczanska, E., Brown, C., Sydeman, W., Kiessling, W., Schoeman, D., Moore, P., …, & Richardson, A. (2013, August 4). Global imprint of climate change on marine life. Nature Climate Change, 3, 919-925. Retrieved from: https://www.nature.com/articles/nclimate1958

Over the last decade, there have been widespread systemic shifts in phenology, demography, and distribution of species in marine ecosystems. This study synthesized all available studies of marine ecological observations with expectations under climate change; they found 1,735 marine biological responses which either local or global climate change was the source.

BACK TO TOP

IV. Hypoxia (Dead Zones)

Hypoxia is low or depleted levels of oxygen in water. It is often associated with the overgrowth of algae that leads to oxygen depletion when the algae die, sink to the bottom, and decompose. Hypoxia is also exacerbated by high levels of nutrients, warmer water, and other ecosystem disruption due to climate change.

National Oceanic and Atmospheric Administration. (2019, May 24). What is a Dead Zone? National Ocean Service: The United States Department of Commerce. Retrieved from: oceanservice.noaa.gov/facts/deadzone.html

A dead zone is the common term for hypoxia and refers to a reduced level of oxygen in the water leading to biological deserts. These zones are naturally occurring, but are enlarged and enhanced by human activity though warmer water temperatures caused by climate change. Excess nutrients that run-off the land and into waterways is the primary cause of the increase of dead zones. 

Environmental Protection Agency. (2019, April 15). Nutrient Pollution, The Effects: Environment. The United States Environmental Protection Agency. Retrieved from: https://www.epa.gov/nutrientpollution/effects-environment

Nutrient pollution fuels the growth of harmful algal blooms (HABs), which have negative impacts on aquatic ecosystems. HABs sometimes can create toxins that are consumed by small fish and work their way up the food chain and become detrimental to marine life. Even when they do not create toxins, they block sunlight, clog fish gills, and create dead zones. Dead zones are areas in water with little or no oxygen that are formed when algal blooms consume oxygen as they die causing marine life to leave the affected area.

Breitburg, D., Levin, L., Oschiles, A., Grégoire, M., Chavez, F., Conley, D., …, & Zhang, J. (2018, January 5). Declining oxygen in the global ocean and coastal waters. Science, 359(6371). Retrieved from: doi.org/10.1126/science.aam7240

Largely due to human activities that have increased the overall global temperature and the amount of nutrients that are discharged into coastal waters, the oxygen content of the overall ocean is and has been declining for at least the last fifty years. The declining level of oxygen in the ocean has both biological and ecological consequences on both regional and global scales.

Breitburg, D., Grégoire, M., & Isensee, K. (2018). The ocean is losing its breath: Declining oxygen in the world’s ocean and coastal waters. IOC-UNESCO, IOC Technical Series, 137. Retrieved from: https://orbi.uliege.be/bitstream/2268/232562/1/Technical%20Brief_Go2NE.pdf

Oxygen is declining in the ocean and humans are the major cause. This occurs when more oxygen is consumed than replenished where warming and nutrient increases cause high levels of microbial consumption of oxygen. Deoxygenation can be worsened by dense aquaculture, leading to reduced growth, behavioral changes, increased diseases particularly for finfish and crustaceans. Deoxygenation is predicted to become exacerbated in coming years, but steps can be taken to combat this threat including reducing greenhouse gas emissions, as well as black carbon and nutrient discharges.

Bryant, L. (2015, April 9). Ocean ‘dead zones’ a growing disaster for fish. Phys.org. Retrieved from: https://phys.org/news/2015-04-ocean-dead-zones-disaster-fish.html

Historically, sea floors have taken millennia to recover from past eras of low oxygen, also known as dead zones. Due to human activity and rising temperatures dead zones currently constitute 10% and rising of the world’s ocean surface area. Agrochemical use and other human activities lead to rising levels of phosphorus and nitrogen in the water feeding the dead zones.

BACK TO TOP

V. The Effects of Warming Waters

Schartup, A., Thackray, C., Quershi, A., Dassuncao, C., Gillespie, K., Hanke, A., & Sunderland, E. (2019, August 7). Climate change and overfishing increase neurotoxicant in marine predators. Nature, 572, 648-650. Retrieved from: doi.org/10.1038/s41586-019-1468-9

Fish are the predominant source of human exposure to methylmercury, which can lead to long-term neurocognitive deficits in children that persist into adulthood. Since the 1970s there has been an estimated 56% increase in tissue methylmercury in Atlantic bluefin tuna due to increases in seawater temperatures.

Smale, D., Wernberg, T., Oliver, E., Thomsen, M., Harvey, B., Straub, S., …, & Moore, P. (2019, March 4). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9, 306-312. Retrieved from: nature.com/articles/s41558-019-0412-1

The ocean has warmed considerably over the past century. Marine heatwaves, periods of regional extreme warming, have particularly affected critical foundation species such as corals and seagrasses. As anthropogenic climate change intensifies, the marine warming and heatwaves have the capability to restructure ecosystems and disrupt the provision of ecological goods and services.

Sanford, E., Sones, J., Garcia-Reyes, M., Goddard, J., & Largier, J. (2019, March 12). Widespread shifts in the coastal biota of northern California during the 2014-2016 marine heatwaves. Scientific Reports, 9(4216). Retrieved from: doi.org/10.1038/s41598-019-40784-3

In response to prolonged marine heatwaves, increased poleward dispersal of species and extreme changes in sea surface temperature may be seen in the future. The severe marine heatwaves have caused mass mortalities, harmful algal blooms, declines in kelp beds, and substantial changes in the geographic distribution of species.

Pinsky, M., Eikeset, A., McCauley, D., Payne, J., & Sunday, J. (2019, April 24). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569, 108-111. Retrieved from: doi.org/10.1038/s41586-019-1132-4

It is important to understand which species and ecosystems will be most affected by warming due to climate change in order to ensure effective management. Higher sensitivity rates to warming and faster rates of colonization in marine ecosystems suggest that extirpations will be more frequent and species turnover faster in the ocean.

Morley, J., Selden, R., Latour, R., Frolicher, T., Seagraves, R., & Pinsky, M. (2018, May 16). Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLOS ONE. Retrieved from: doi.org/10.1371/journal.pone.0196127

Due to changing ocean temperatures, species are beginning to change their geographic distribution towards the poles. Projections were made for 686 marine species that are likely to be affected by changing ocean temperatures. Future geographic shift projections were generally poleward and followed coastlines and helped identify which species are particularly vulnerable to climate change.

Hughes, T., Kerry, J., Baird, A., Connolly, S., Dietzel, A., Eakin, M., Heron, S., …, & Torda, G. (2018, April 18). Global warming transforms coral reef assemblages. Nature, 556, 492-496. Retrieved from: nature.com/articles/s41586-018-0041-2?dom=scribd&src=syn

In 2016, the Great Barrier Reef experienced a record-breaking marine heatwave. The study hopes to bridge the gap between the theory and practice of examining the risks of ecosystem collapse to predict how future-warming events might affect coral reef communities. They define different stages, identify the major driver, and establish quantitative collapse thresholds. 

Gramling, C. (2015, November 13). How Warming Oceans Unleashed an Ice Stream. Science, 350(6262), 728. Retrieved from: DOI: 10.1126/science.350.6262.728

A Greenland glacier is shedding kilometers of ice into the sea each year as warm ocean waters undermine it. What is going on under the ice raises the most concern, as warm ocean waters have eroded the glacier far enough to detach it from the sill. This will cause the glacier to retreat even faster and creates huge alarm about the potential sea-level rise.

Precht, W., Gintert, B., Robbart, M., Fur, R., & van Woesik, R. (2016). Unprecedented Disease-Related Coral Mortality in Southeastern Florida. Scientific Reports, 6(31375). Retrieved from: https://www.nature.com/articles/srep31374

Coral bleaching, coral disease, and coral mortality events are increasing due to high water temperatures attributed to climate change. Looking at the unusually high levels of contagious coral disease in southeastern Florida throughout 2014, the article links the high level of coral mortality to thermally stressed coral colonies.

Friedland, K., Kane, J., Hare, J., Lough, G., Fratantoni, P., Fogarty, M., & Nye, J. (2013, September). Thermal habitat constraints on zooplankton species associated with Atlantic cod (Gadus morhua) on the US Northeast Continental Shelf. Progress in Oceanography, 116, 1-13. Retrieved from: https://doi.org/10.1016/j.pocean.2013.05.011

Within the ecosystem of the US Northeast Continental Shelf there are different thermal habitats, and the increasing water temperatures are impacting the quantity of these habitats. The amounts of warmer, surface habitats have increased whereas the cooler water habitats have decreased. This has the potential to significantly lower quantities of Atlantic Cod as their food zooplankton is affected by the shifts in temperature.

BACK TO TOP

VI. Marine Biodiversity Loss due to Climate Change

Record, N., Runge, J., Pendleton, D., Balch, W., Davies, K., Pershing, A., …, & Thompson C. (2019, May 3). Rapid Climate-Driven Circulation Changes Threaten Conservation of Endangered North Atlantic Right Whales. Oceanography, 32(2), 162-169. Retrieved from: doi.org/10.5670/oceanog.2019.201

Climate change is causing ecosystems to rapidly change states, which renders a lot of conservation strategies based on historical patterns ineffective. With deep-water temperatures warming at rates twice as high as surface water rates, species like Calanus finmarchicus, a critical food supply for North Atlantic right whales, have changed their migration patterns. North Atlantic right whales are following their prey out of their historical migration route, changing the pattern, and thus putting them at risk to ship strikes or gear entanglements in areas conservation strategies do not protect them.

Bryndum-Buchholz, A., Tittensor, D., Blanchard, J., Cheung, W., Coll, M., Galbraith, E., …, & Lotze, H. (2018, November 8). Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Global Change Biology, 25(2), 459-472. Retrieved from: https://doi.org/10.1111/gcb.14512 

Climate change affects marine ecosystems in relation to primary production, ocean temperature, species distributions, and abundance at local and global scales. These changes significantly alter marine ecosystem structure and function. This study analyzes the responses of marine animal biomass in response to these climate change stressors.

Niiler, E. (2018, March 8). More Sharks Ditching Annual Migration as Ocean Warms. National Geographic. Retrieved from: nationalgeographic.com/news/2018/03/animals-sharks-oceans-global-warming/

Male blacktip sharks historically have migrated south during the coldest months of the year to mate with females off the coast of Florida. These sharks are vital to Florida’s coastal ecosystem: By eating weak and sick fish, they help balance the pressure on coral reefs and seagrasses. Recently, the male sharks have stayed farther north as the northern waters become warmer. Without southward migration, the males will not mate or protect Florida’s coastal ecosystem.

Worm, B., & Lotze, H. (2016). Climate Change: Observed Impacts on Planet Earth, Chapter 13 – Marine Biodiversity and Climate Change. Department of Biology, Dalhousie University, Halifax, NS, Canada. Retrieved from: sciencedirect.com/science/article/pii/B9780444635242000130

Long-term fish and plankton monitoring data has provided the most compelling evidence for climate-driven changes in species assemblages. The chapter concludes that conserving marine biodiversity may provide the best buffer against rapid climate change.

McCauley, D., Pinsky, M., Palumbi, S., Estes, J., Joyce, F., & Warner, R. (2015, January 16). Marine defaunation: Animal loss in the global ocean. Science, 347(6219). Retrieved from: https://science.sciencemag.org/content/347/6219/1255641

Humans have profoundly affected marine wildlife and the function and structure of the ocean. Marine defaunation, or human-caused animal loss in the ocean, emerged only hundreds of years ago. Climate change threatens to accelerate marine defaunation over the next century. One of the main drivers of marine wildlife loss is habitat degradation due to climate change, which is avoidable with proactive intervention and restoration.

Deutsch, C., Ferrel, A., Seibel, B., Portner, H., & Huey, R. (2015, June 05). Climate change tightens a metabolic constraint on marine habitats. Science, 348(6239), 1132-1135. Retrieved from: science.sciencemag.org/content/348/6239/1132

Both the warming of the ocean and the loss of dissolved oxygen will drastically alter marine ecosystems. In this century, the metabolic index of the upper ocean is predicted to reduce by 20% globally and 50% in northern high-latitude regions. This forces poleward and vertical contraction of metabolically viable habitats and species ranges. The metabolic theory of ecology indicates that body size and temperature influence organisms’ metabolic rates, which may explain shifts in animal biodiversity when the temperature changes by providing more favorable conditions to certain organisms.

Marcogilese, D.J. (2008). The impact of climate change on the parasites and infectious diseases of aquatic animals. Scientific and Technical Review of the Office International des Epizooties (Paris), 27(2), 467-484. Retrieved from: https://pdfs.semanticscholar.org/219d/8e86f333f2780174277b5e8c65d1c2aca36c.pdf

The distribution of parasites and pathogens will be directly and indirectly affected by global warming, which may cascade through food webs with consequences for entire ecosystems. Transmission rates of parasites and pathogens are directly correlated to temperature, the increasing temperature is increasing transmission rates. Some evidence also suggests that virulence is directly correlated as well.

Barry, J.P., Baxter, C.H., Sagarin, R.D., & Gilman, S.E. (1995, February 3). Climate-related, long-term faunal changes in a California rocky intertidal community. Science, 267(5198), 672-675. Retrieved from: doi.org/10.1126/science.267.5198.672

The invertebrate fauna in a California rocky intertidal community has shifted northward when comparing two study periods, one from 1931-1933 and the other from 1993-1994. This shift northward is consistent with predictions of change associated with climate warming. When comparing the temperatures from the two study periods, the mean summer maximum temperatures during the period 1983-1993 were 2.2˚C warmer than the mean summer maximum temperatures from 1921-1931.

BACK TO TOP

VII. The Effects of Climate Change on Coral Reefs

Brown, K., Bender-Champ, D., Kenyon, T., Rémond, C., Hoegh-Guldberg, O., & Dove, S. (2019, February 20). Temporal effects of ocean warming and acidification on coral-algal competition. Coral Reefs, 38(2), 297-309. Retrieved from: link.springer.com/article/10.1007/s00338-019-01775-y 

Coral reefs and algae are essential to ocean ecosystems and they are in competition with one another due to limited resources. Due to warming water and acidification as a result of climate change, this competition is being altered. To offset the combined effects of ocean warming and acidification, tests were conducted, but even enhanced photosynthesis was not enough to offset the effects and both corals and algae have reduced survivorship, calcification, and photosynthetic ability.

Bruno, J., Côté, I., & Toth, L. (2019, January). Climate Change, Coral Loss, and the Curious Case of the Parrotfish Paradigm: Why Don’t Marine Protected Areas Improve Reef Resilience? Annual Review of Marine Science, 11, 307-334. Retrieved from: annualreviews.org/doi/abs/10.1146/annurev-marine-010318-095300

Reef-building corals are being devastated by climate change. To combat this, marine protected areas were established, and the protection of herbivorous fish followed. The others posit that these strategies have had little effect on the overall coral resilience because their main stressor is the rising ocean temperature. To save reef-building corals, efforts need to go past the local level. Anthropogenic climate change needs to be tackled head-on as it is the root cause of global coral decline.

Cheal, A., MacNeil, A., Emslie, M., & Sweatman, H. (2017, January 31). The threat to coral reefs from more intense cyclones under climate change. Global Change Biology. Retrieved from: onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13593

Climate change boosts the energy of cyclones that cause coral destruction. While cyclone frequency is not likely to increase, cyclone intensity will as a result of climate warming. The increase in cyclone intensity will accelerate coral reef destruction and slow post-cyclone recovery due to the cyclone’s obliteration of biodiversity. 

Hughes, T., Barnes, M., Bellwood, D., Cinner, J., Cumming, G., Jackson, J., & Scheffer, M. (2017, May 31). Coral reefs in the Anthropocene. Nature, 546, 82-90. Retrieved from: nature.com/articles/nature22901

Reefs are degrading rapidly in response to a series of anthropogenic drivers. Because of this, returning reefs to their past configuration is not an option. To combat reef degradation, this article calls for radical changes in science and management to steer reefs through this era while maintaining their biological function.

Hoegh-Guldberg, O., Poloczanska, E., Skirving, W., & Dove, S. (2017, May 29). Coral Reef Ecosystems under Climate Change and Ocean Acidification. Frontiers in Marine Science. Retrieved from: frontiersin.org/articles/10.3389/fmars.2017.00158/full

Studies have begun to predict the elimination of most warm-water coral reefs by 2040-2050 (although cold-water corals are at lower risk). They assert that unless rapid advances are made in emission reduction, communities that depend on coral reefs to survive are likely to face poverty, social disruption, and regional insecurity.

Hughes, T., Kerry, J., & Wilson, S. (2017, March 16). Global warming and recurrent mass bleaching of corals. Nature, 543, 373-377. Retrieved from: nature.com/articles/nature21707?dom=icopyright&src=syn

Recent recurrent mass coral bleaching events have varied significantly in severity. Using surveys of Australian reefs and sea surface temperatures, the article explains that water quality and fishing pressure had minimal effects on bleaching in 2016, suggesting that local conditions provide little protection against extreme temperatures.

Torda, G., Donelson, J., Aranda, M., Barshis, D., Bay, L., Berumen, M., …, & Munday, P. (2017). Rapid adaptive responses to climate change in corals. Nature, 7, 627-636. Retrieved from: nature.com/articles/nclimate3374

A coral reefs’ ability to adapt to climate change will be crucial to projecting a reef’s fate. This article dives into the transgenerational plasticity among corals and the role of epigenetics and coral-associated microbes in the process.

Anthony, K. (2016, November). Coral Reefs Under Climate Change and Ocean Acidification: Challenges and Opportunities for Management and Policy. Annual Review of Environment and Resources. Retrieved from: annualreviews.org/doi/abs/10.1146/annurev-environ-110615-085610

Considering the rapid degradation of coral reefs due to climate change and ocean acidification, this article suggests realistic goals for regional and local-scale management programs that could improve sustainability measures. 

Hoey, A., Howells, E., Johansen, J., Hobbs, J.P., Messmer, V., McCowan, D.W., & Pratchett, M. (2016, May 18). Recent Advances in Understanding the Effects of Climate Change on Coral Reefs. Diversity. Retrieved from: mdpi.com/1424-2818/8/2/12

Evidence suggests coral reefs may have some capacity to respond to warming, but it’s unclear if these adaptations can match the increasingly rapid pace of climate change. However, the effects of climate change are being compounded by a variety of other anthropogenic disturbances making it harder for corals to respond.

Ainsworth, T., Heron, S., Ortiz, J.C., Mumby, P., Grech, A., Ogawa, D., Eakin, M., & Leggat, W. (2016, April 15). Climate change disables coral bleaching protection on the Great Barrier Reef. Science, 352(6283), 338-342. Retrieved from: science.sciencemag.org/content/352/6283/338

The current character of temperature warming, which precludes acclimation, has resulted in increased bleaching and death of coral organisms. These effects were most extreme in the wake of the 2016 El Nino year.

Graham, N., Jennings, S., MacNeil, A., Mouillot, D., & Wilson, S. (2015, February 05). Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature, 518, 94-97. Retrieved from: nature.com/articles/nature14140

Coral bleaching due to climate change is one of the major threats facing coral reefs. This article considers long-term reef responses to major climate-induced coral bleaching of Indo-Pacific corals and identifies reef characteristics that favor rebound. The authors aim to use their findings to inform future best management practices. 

Spalding, M. D., & B. Brown. (2015, November 13). Warm-water coral reefs and climate change. Science, 350(6262), 769-771. Retrieved from: https://science.sciencemag.org/content/350/6262/769

Coral reefs support huge marine life systems as well as providing critical ecosystem services for millions of people. However, known threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification to increase the damage to coral reefs. This article provides a succinct overview of the effects of climate change on coral reefs.

Hoegh-Guldberg, O., Eakin, C.M., Hodgson, G., Sale, P.F., & Veron, J.E.N. (2015, December). Climate Change Threatens the Survival of Coral Reefs. ISRS Consensus Statement on Coral Bleaching & Climate Change. Retrieved from: https://www.icriforum.org/sites/default/files/2018%20ISRS%20Consensus%20Statement%20on%20Coral%20Bleaching%20%20Climate%20Change%20final_0.pdf

Coral reefs provide goods and services worth at least US$30 billion per year and support at least 500 million people worldwide. Due to climate change, reefs are under serious threat if actions to curb carbon emissions globally are not taken immediately. This statement was released in parallel with the Paris Climate Change Conference in December 2015.

BACK TO TOP

VIII. The Effects of Climate Change on the Arctic and Antarctic 

Climate Change Effects on Arctic Species. Fact sheet from Aspen Institute & SeaWeb. Retrieved from: https://assets.aspeninstitute.org/content/uploads/files/content/upload/ee_3.pdf

Illustrated fact sheet highlighting the challenges of Arctic research, the relatively short time frame that studies of species have been undertaken and positing the effects of sea ice loss and other impact of climate change.

Christian, C. (2019, January) Climate Change and the Antarctic. Antarctic & Southern Ocean Coalition. Retrieved from https://www.asoc.org/advocacy/climate-change-and-the-antarctic

This summary article provides an excellent overview of the effects of climate change on the Antarctic and its effect on marine species there. The West Antarctic Peninsula is one of the fastest warming areas on Earth, with only some areas of the Arctic Circle experiencing faster rising temperatures. This rapid warming affects every level of the food web in Antarctic waters.

Katz, C. (2019, May 10) Alien Waters: Neighboring Seas Are Flowing into a Warming Arctic Ocean. Yale Environment 360. Retrieved from https://e360.yale.edu/features/alien-waters-neighboring-seas-are-flowing-into-a-warming-arctic-ocean

The article discusses the “Atlantification” and “Pacification” of the Arctic Ocean as warming waters allowing new species to migrate northward and disrupting the ecosystem functions and lifecycles that have evolved over time within the Arctic Ocean.

MacGilchrist, G., Naveira-Garabato, A.C., Brown, P.J., Juillion, L., Bacon, S., & Bakker, D.C.E. (2019, August 28). Reframing the carbon cycle of the subpolar Southern Ocean. Science Advances, 5(8), 6410. Retrieved from: https://doi.org/10.1126/sciadv.aav6410

Global climate is critically sensitive to physical and biogeochemical dynamics in the subpolar Southern Ocean, because it is there that deep, carbon-rich layers of the world ocean outcrop and exchange carbon with the atmosphere. Thus, how carbon uptake works there specifically must be well understood as a means of understanding past and future climate change. Based on their research, the authors believe that the conventional framework for the subpolar Southern Ocean carbon cycle fundamentally misrepresents the drivers of regional carbon uptake. Observations in the Weddell Gyre show that the rate of carbon uptake is set by interplay between the Gyre’s horizontal circulation and the remineralization at mid-depths of organic carbon sourced from biological production in the central gyre. 

Woodgate, R. (2018, January) Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Progress in Oceanography, 160, 124-154 Retrieved from: https://www.sciencedirect.com/science/article/pii/S0079661117302215

With this study, conducted using data from year-round mooring buoys in the Bering Strait, the author established that northward flow of water through the straight had increased dramatically over 15 years, and that the change was not due to local wind or other individual weather events, but due to warming waters. The transport increase results from stronger northward flows (not fewer southward flow events), yielding a 150% increase in kinetic energy, presumably with impacts on bottom suspension, mixing, and erosion. It was also noted that the temperature of the northward flowing water was warmer than 0 degrees C on more days by 2015, than at the beginning of the data set.

Stone, D. P. (2015). The Changing Arctic Environment. New York, New York: Cambridge University Press.

Since the industrial revolution the Arctic environment is undergoing unprecedented change due to human activity. The seemingly pristine arctic environment is also showing high levels of toxic chemicals and increased warming which have started to have serious consequences on the climate in other parts of the world. Told though an Arctic Messenger, author David Stone examines scientific monitoring and influential groups have led to international legal actions to lessen the harm to the arctic environment.

Wohlforth, C. (2004). The Whale and the Supercomputer: On The Northern Front of Climate Change. New York: North Point Press. 

The Whale and the Supercomputer weaves the personal stories of the scientists researching climate with the experiences of the Inupiat of northern Alaska. The book equally describes the whaling practices and traditional knowledge of the Inupiaq as much as data-driven measures of snow, glacial melt, albedo -that is, light-reflected by a planet- and biological changes observable in animals and insects. The description of the two cultures allows non-scientists to relate to the earliest examples of climate change effecting the environment.

BACK TO TOP

IX. Policy and Government Publications

Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., …, & Weyer, N. (2019). Special Report on the Ocean and Cryosphere in a Changing Climate. Intergovernmental Panel on Climate Change. PDF.

The Intergovernmental Panel on Climate Change released a special report authored by more than 100 scientists from over 36 countries on the enduring changes in the ocean and cryosphere-the frozen parts of the planet. The key finds are that major changes in high mountain areas will affect downstream communities, glaciers and ice sheets are melting contributing to increasing rates of sea level rise predicted to reach 30-60 cm (11.8 – 23.6 inches) by 2100 if greenhouse gas emissions are sharply curbed and 60-110cm (23.6 – 43.3 inches) if greenhouse continue their current rise. There will be more frequent extreme sea level events, changes in the ocean’s ecosystems through ocean warming and acidification and Arctic sea ice is declining every month along with thawing permafrost. The report finds that strongly reducing greenhouse gas emissions, protecting and restoring ecosystems and careful resource management make it possible to preserve the ocean and cryosphere, but action must be taken.

The United Nation. (2015). The Paris Agreement. Bonn, Germany: United National Framework Convention on Climate Change secretariat, U.N. Climate Change. Retrieved from: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

The Paris Agreement came into force on 4 November 2016. Its intent was to unite nations in an ambitious effort to limit climate change and adapt to its effects. The central goal is to keep global temperature rise below 2 degrees Celsius (3.6 degrees Fahrenheit) above pre-industrial levels and limit further temperature increase to less than 1.5 degrees Celsius (2.7 degrees Fahrenheit). These have been codified by each party with specific Nationally Determined Contributions (NDCs) that require each party to regularly report on their emissions and implementation efforts. To date, 196 Parties have ratified the agreement, though it should be noted the United States was an original signatory, but has given notice that it will withdraw from the agreement.
Please note this document is the only source not in chronological order. As the most comprehensive international commitment affecting climate change policy, this source is included out of chronological order.

The U.S. Department of Defense. (2019, January). Report on Effects of a Changing Climate to the Department of Defense. Office of the Under Secretary of Defense for Acquisition and Sustainment. Retrieved from: https://climateandsecurity.files.wordpress.com/2019/01/sec_335_ndaa-report_effects_of_a_changing_climate_to_dod.pdf

The U.S. Department of Defense considers the national security risks associated with a changing climate and subsequent events such as recurrent flooding, drought, desertification, wildfires, and thawing permafrost’s effects on national security. The report finds that climate resilience must be incorporated in planning and decision-making processes and cannot act as a separate program. The report finds that there are significant security vulnerabilities from climate-related events on operations and missions.

Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., & Maycock, T.K. (2017). Climate Science Special Report: Fourth National Climate Assessment, Volume I. Washington, D.C., USA: U.S. Global Change Research Program.

As part of the National Climate Assessment ordered by the U.S. Congress to be conducted every four years is designed to be an authoritative assessment of the science of climate change with a focus on the United States. Some key findings include the following: the last century is the warmest in the history of civilization; human activity -particularly the emission of greenhouse gases- is the dominant cause of the observed warming; the global average sea level has rising by 7 inches in the last century; tidal flooding is increasing and sea levels are expected to continue to rise; heatwaves will be more frequent, as will forest fires; and the magnitude of change will depend heavily on global levels of greenhouse gas emissions.

Cicin-Sain, B. (2015, April). Goal 14—Conserve and Sustainably Use Oceans, Seas and Marine Resources for Sustainable Development. United Nations Chronicle, LI(4). Retrieved from: http://unchronicle.un.org/article/goal-14-conserve-and-sustainably-useoceans-seas-and-marine-resources-sustainable/ 

Goal 14 of the United Nations Sustainable Development Goals (UN SDGs) highlights the need for the conservation of the ocean and sustainable use of marine resources. The most ardent support for ocean management comes from the small island developing states and least developed countries that are adversely affected by ocean negligence. Programs that address Goal 14 also serve to meet seven other UN SDG goals including on poverty, food security, energy, economic growth, infrastructure, reduction of inequality, cities and human settlements, sustainable consumption and production, climate change, biodiversity, and means of implementation and partnerships.

United Nations. (2015). Goal 13—Take Urgent Action to Combat Climate Change and its Impacts. United Nations Sustainable Development Goals Knowledge Platform. Retrieved from: https://sustainabledevelopment.un.org/sdg13

Goal 13 of the United Nations Sustainable Development Goals (UN SDGs) highlights the need to address the increasing effects of greenhouse gas emissions. Since the Paris Agreement many countries have taken positive steps for climate finance through nationally determined contributions, there remains significant need for action on mitigation and adaptation, particularly for least developed countries and small island nations. 

U.S. Department of Defense. (2015, July 23). National Security Implication of Climate-Related Risks and a Changing Climate. Senate Committee on Appropriations. Retrieved from: https://dod.defense.gov/Portals/1/Documents/pubs/150724-congressional-report-on-national-implications-of-climate-change.pdf

The Department of Defense sees climate change as a present security threat with observable effects in shocks and stressors to vulnerable nations and communities, including the United States. The risks themselves vary, but all share a common assessment of climate change’s significance.

Pachauri, R.K., & Meyer, L.A. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, Switzerland. Retrieved from: https://www.ipcc.ch/report/ar5/syr/

Human influence on the climate system is clear and recent anthropogenic emissions of greenhouse gases are the highest in history. Effective adaption and mitigation possibilities are available in every major sector, but responses will depend on policies and measures across the international, national, and local levels. The 2014 report has become a definitive study about climate change.

Hoegh-Guldberg, O., Cai, R., Poloczanska, E., Brewer, P., Sundby, S., Hilmi, K., …, & Jung, S. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, New York USA: Cambridge University Press. 1655-1731. Retrieved from: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap30_FINAL.pdf

The ocean is essential to the Earth’s climate and has absorbed 93% of the energy produced from the enhanced greenhouse effect and approximately 30% of the anthropogenic carbon dioxide from the atmosphere. Global average sea surface temperatures have increased from 1950-2009. The ocean chemistry is changing due to an uptake of CO2 decreasing the overall ocean pH. These, along with many other effects of anthropogenic climate change, have a plethora of detrimental repercussions on the ocean, marine life, the environment, and humans.
Please note this is related to the Synthesis Report detailed above, but is specific to The Ocean.

Griffis, R., & Howard, J. (Eds.). (2013). Oceans and Marine Resources in a Changing Climate; A Technical Input to the 2013 National Climate Assessment. The National Oceanic and Atmospheric Administration. Washington, D.C., USA: Island Press.

As a companion to the National Climate Assessment 2013 report, this document looks at the technical considerations and findings specific to the ocean and marine environment. The report argues that climate-driven physical and chemical changes are causing significant harm, will adversely affect the ocean’s features, thus the Earth’s ecosystem. There remain many opportunities to adapt and address these problems including increased international partnership, sequestration opportunities, and improved marine policy and management. This report provides one of the most thorough investigates the consequence of climate change and its effects on the ocean supported by in-depth research.

Warner, R., & Schofield, C. (Eds.). (2012). Climate Change and the Oceans: Gauging the Legal and Policy Currents in the Asia Pacific and Beyond. Northampton, Massachusetts: Edwards Elgar Publishing, Inc.

This collection of essays looks at the nexus of governance and climate change within the Asia-Pacific region. The book begins by discussing the physical effects of climate change including effects on biodiversity and the policy implications. The moves into discussions of maritime jurisdiction in the Southern Ocean and Antarctic followed by a discussion of country and maritime boundaries, followed by a security analysis. The final chapters discuss the implications of greenhouse gases and opportunities for mitigation. Climate change presents an opportunity for global cooperation, signals a need for monitoring and regulating marine geo-engineering activities in response to climate change mitigation efforts, and develop a coherent international, regional, and national policy response that recognize the ocean’s role in climate change.

United Nations. (1997, December 11). The Kyoto Protocol. United Nations Framework Convention on Climate Change. Retrieved from: https://unfccc.int/kyoto_protocol

The Kyoto Protocol is an international commitment to set internationally binding targets for greenhouse gas emission reduction. This agreement was ratified in 1997 and entered into force in 2005. The Doha Amendment was adopted in December, 2012 to extend the protocol to December 31st, 2020 and revise the list of greenhouse gases (GHG) that must be reported by each party.

BACK TO TOP

X. Looking for More? (Additional Resources)

This research page is designed to be a curated list of resources of the most influential publications on the ocean and climate. For additional information on specific topics we recommend the following journals, databases, and collections: 

Back to Top